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Abstract

We present a specialized procedural model for generating
synthetic agricultural scenes, focusing on soybean crops,
along with various weeds. This model is capable of simulat-
ing distinct growth stages of these plants, diverse soil con-
ditions, and randomized field arrangements under varying
lighting conditions. The integration of real-world textures
and environmental factors into the procedural generation
process enhances the photorealism and applicability of the
synthetic data. Our dataset includes 12,000 images with
semantic labels, offering a comprehensive resource for com-
puter vision tasks in precision agriculture, such as semantic
segmentation for autonomous weed control. We validate
our model’s effectiveness by comparing the synthetic data
against real agricultural images, demonstrating its potential
to significantly augment training data for machine learning
models in agriculture. This approach not only provides a
cost-effective solution for generating high-quality, diverse
data but also addresses specific needs in agricultural vision
tasks that are not fully covered by general-purpose models.

1. Introduction

Advancements in computer vision, particularly within the
agricultural domain, are increasingly reliant on the avail-
ability of diverse and accurately labeled datasets. Synthetic
data emerges as a valuable resource in this context, offering
several advantages:

* Cost-Effectiveness and Accuracy: Synthetic data provides
labeled information that is often cheaper to acquire and
less error-prone compared to manually labeled data [12,
217, 29].

* Diversity and Edge Cases: It enables the generation of
diverse data, including rare edge cases, which are crucial
for robust model training [28].

e Tailored Conditions: For agriculture-specific applications,
there is a need for datasets that reflect a variety of crop
types at different growth stages, diseases, soil types, field
arrangements, and environmental conditions as has been
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shown for other outdoor and indoor applications [24, 31].

While general-purpose procedural models like Infinigen
[19] offer broad solutions, agricultural vision tasks demand
a more specific approach. Essential factors in this domain
include diverse crop types at various growth stages, disease
markers, soil conditions, and specific field arrangements. Our
work aims to address these needs by generating synthetic
images of crops using state-of-the-art procedural models of
plants and their environments in a controllable and efficient
manner.

Specifically in this work, we introduce a procedural mod-
elling approach to build virtual soybean fields which we
used to generate a realistic synthetic dataset. This dataset
comprises 12,000 synthetic images and encompasses:

1. Multiple growth stages of soybean plants and common
weeds.

2. Variations in soil types and conditions, reflecting real-
world agricultural diversity.

3. Randomized field arrangements and weed placement, of-
fering realistic and challenging scenarios for computer
vision models.

4. Diverse camera angles and lighting conditions to simulate
different times of the day and observational perspectives.

5. Semantic labels for crops and weeds, with the potential
for other types of labels.

To validate our approach, we compare our synthetic
dataset against a corresponding set of real soybean plant
images provided by Blue River Technology (https://
bluerivertechnology . com/). This evaluation fo-
cuses on a semantic labeling task aimed at distinguishing
between crop and weed plants, a critical step for training
autonomous agricultural machinery. Our analysis involves
testing models trained on various combinations of real and
synthetic datasets, supplemented by cosine similarity tests
and embedding visualizations to assess the similarity be-
tween synthetic and real imagery. Through this work, we
demonstrate the effectiveness of our synthetic data in closely
mirroring real-world conditions, thereby supporting the de-
velopment of more accurate and robust computer vision
models for agricultural applications.
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2. Related Work

The utilization of synthetic data, especially from computer
graphics, has been increasingly popular in computer vision,
spanning a variety of tasks and domains [27, 28]. For an
extensive overview, readers are referred to Nikolenko [14],
who provides a comprehensive survey of this field. Below,
we categorize existing work in relation to agricultural appli-
cations, generation methods, and the specific challenges they
address.

The agricultural domain has seen a growing interest in
synthetic data applications, but the focus has primarily been
on indoor farming scenes [ 1] or simplified outdoor scenarios
[21, 23]. These datasets have facilitated progress in tasks
such as plant health monitoring, yield estimation, and weed
detection. However, they often lack the complexity of real-
world agricultural environments, such as varying crop stages,
soil conditions, and field arrangements, which are critical
for broad production deployments of precision agriculture.
The majority of synthetic datasets in agriculture are created
using static libraries of 3D assets, which may lead to a lack
of diversity and potential overfitting issues. Our approach, in
contrast, leverages procedural generation, not just for object
placement but also for dynamically simulating growth stages
and environment. This method provides a more realistic
and diverse range of scenarios, essential for training robust
computer vision models for agriculture.

While datasets such as Synscapes [28] and Infinigen [19]
have made significant strides in generating synthetic natural
scenes, they often focus on broader landscapes or general
natural objects. Our work specifically addresses the gap in
generating complex agricultural scenes that include detailed
plant models and varied soil types, reflecting the unique
challenges faced in agricultural computer vision tasks.

In summary, while there have been significant advance-
ments in synthetic data generation for computer vision, the
application in agriculture, particularly in complex and varied
outdoor environments, remains under-explored. Our work
contributes to this field by providing a highly specialized
and procedural approach to generating agricultural scenes,
offering new opportunities for the development of advanced
computer vision systems in precision agriculture.

3. Method

Our method to generate synthetic images of crops is rooted
in procedural modelling: we use algorithms to create 3D
models of plants, soils and other natural materials from sets
of rules with configurable parameters. Because every asset
in the synthetic image is generated, we can produce infi-
nite variation and composition, offering broad coverage of
agriculturally-relevant scenes. The main components of our
workflow are:

1. plant and soil modeling,

2. field composition and randomization,
3. image rendering, and
4. domain adaptation.

The modeling, composition and randomization steps of
our workflow are performed on the basis of procedural gener-
ation primitives from the open-source 3D computer graphics
software Blender [7]. For some plant species, requiring more
specialized procedural models, we use the L-system-based
L+C modeling language, implemented in the Virtual Lab-
oratory plant modeling environment [18]. The 3D models
from this software are imported into Blender before the field
composition and randomization takes place.

As an optional step, we apply a domain-adaptation al-
gorithm to the synthetic images. However, this depends on
the availability of real data for training an image-to-image
translation network, which learns to translate images from a
synthetic domain to a more realistic one.

3.1. Plant models

We created parameterized procedural models of soybean
(Glycine max), a grassy weed, and a broadleaf weed, which
we used to generate a large set of diverse individual plants.
The models are based on existing literature describing the
plant’s growth and development, and incorporate expert
knowledge on plant morphology—provided by agronomists
from Blue River Technology. Each model specifies the shoot
architecture of the plant and the size and density of its or-
gans during vegetative growth, before the appearance of
reproductive organs.

Soybean model. Soybean is a herbaceous annual crop
with growth cessation dependent on the cultivar [3]. In this
work, we modeled the vegetative stage only before flower-
ing, where the plant grows from less than 15 cm to 36 cm
high and produces between one and six fully opened leaves
[16]. Our model simulates the emergence of the stem and
cotyledons, followed by the the first two unifoliate leaves,
and then subsequent trifoliate leaves (see Fig. 1). Because
we modeled these early developmental stages, which have
a simple architecture, our soybean model is constructed us-
ing procedural generation with Blender’s geometry nodes
paradigm. The main stem of a single soy plant is modeled as
a Bezier curve along which cotyledons, unifoliate leaves, and
trifoliate leaves may be arranged. Additionally, the position
of these organs along the curve determines some of their
properties such as size and orientation.

Grassy weed model. Our model of a grassy weed is a
modification of a descriptive model of the vegetative develop-
ment of corn presented by Cieslak et al. [6]. It uses a simple
rule for the distichous arrangement of the plant’s leaves,
which are produced on alternating sides of the stem. A dif-
ferent rule was used to model the production of new leaves
by the main apex, simulating the emergence of successive
leaves after a pre-defined period. The size and orientation of



Figure 1. An example collection of 3D virtual plants generated
by the procedural soybean model. Although the model has several
parameters to control the plant’s morphology, in practice to create
fields of plants, we vary the age of the plant (x axis) and a random-
ization seed (y axis).

each leaf was modeled as a function of its age and position on
the main stem. We defined these functions using a graphical
editor, and calibrated parameters such that the model output
resembled images of the real plant [6]. Lastly, we defined a
rule to generate leaf geometry based on its simulated size
and inclination angle. To model the leaf’s sheath and blade,
we blended between a closed and open generalized cylinder,
bending and twisting its shape along the midrib.

Broadleaf weed model. This model was developed us-
ing L-systems in the Virtual Laboratory [18] on the basis
of descriptions given in weed identification guides [5, 9].
Because we modeled higher order branching, it uses slightly
more complex production rules than the grass weed model.
In particular, the main apex produces lateral branches in the
axil of new leaves. The rate of extension of the branches
is controlled by a graphically-defined function simulating
branch vigour—a phenomenological parameter modelling
endogenous factors that control species-dependent branch-
ing patterns [6]. The geometry of the leaves, internodes, and
branches is determined by their age, maximum size and po-
sition w.r.t. the parent apex. The internodes and branches are
modelled as cylinders, and the leaves are modelled as open
generalized cylinders, where the cross-section is defined as
an open curve using a graphical editor.

3.2. Textures and materials

To achieve photo-realistic renderings of our plant models,
we developed a material pipeline that semi-automatically ex-
tracts and generates leaf textures from real images. We used
the Segment Anything [11] model to extract diffuse maps of
plant leaves that had optimal quality and orthogonal orien-
tation towards the camera. We used these maps to generate
normal, roughness, height, and alpha masks with specialized
software [4]. These textures were subsequently organized
into atlases for each plant. Figure 2 shows a texture atlas
for the soybean model. Each individual leaf in a plant was

Figure 2. Texture atlases used for the soybean plants. From top to
bottom, the texture atlases represent the following: diffuse/albedo
map, height map, normal map, roughness map, and alpha mask
map. The diffuse maps in the top row were obtained from real
images through automatic segmentation, whereas the remainder
were generated procedurally from their respective diffuse map .

assigned a random texture in such an atlas and its material
properties, such as color and brightness, were then further
randomized.

3.3. Soil model and field arrangement

The soil in our synthetic fields is modelled as a texture-
mapped plane, with photorealistic material properties. We
use high-quality soil textures obtained via photogammetry,
as well as their displacement and roughness maps. The soil
textures range in appearance from dry, cracked ground to
wet, muddy soil. The displacement map is used to add depth
information to the otherwise flat ground, and also to verti-
cally displace crops, weeds and debris on the ground. Some
features of our model are (1) randomization of the soil’s
appearance by mixing and tiling patches of its textures with-
out any repetitions, (2) simulating variation in moisture and
color temperature, and (3) addition of imprints due to farm
machinery, like tire tracks.

For each image in the dataset, we specified how crops
and weeds are arranged in the virtual field. To reflect cul-
tivation practices, we set the distance between plants to be
5-10 cm and between rows of plants to be 38-76 cm [20].
We also simulated seed dormancy where 10-15% of the soy-
bean plants did not germinate. The weeds were randomly
distributed with two arrangements: between the crop rows
and/or within the crop rows. The number of weeds ranged
from 1 to 10 per field. Lastly, debris was distributed with
a wide range of densities in a pattern controlled by fractal
Perlin noise, creating clusters of material in the virtual field,
but was dependent on the row spacing.

3.4. Image rendering

We rendered images using Blender’s physically-based path
tracer, Cycles, which simulates the interaction between light
and objects in the virtual scene. When combined with physi-



Figure 3. Selected images from our synthetic dataset, showing variation in crop growth stages, crop spacing, weed distribution, soil type,
crop orientation with respect to the camera, and amount of debris.

cally accurate models of light sources and optical cameras,
path tracing can produce images that are hard to distinguish
from photographs. Figure 3 shows four images from our syn-
thetic dataset. To generate accurate annotations, we disable
some of Cycle’s features, such as volumetric effects, motion
blur, and translucency, and compute masks, surface normals
and depth maps directly from the first rendering pass.

Similarly to Infinigen [19], we use Blender’s improved
version of the Nishita sky model [15] to render the sky. The
model provides an accurate simulation of atmospheric phe-
nomena, including Rayleigh and Mie scattering, and allows
us to control the position of the sun by geographical location
and time of day.

3.5. Domain adaptation

Synthetic images can help address the need for large amounts
of varied training data, but it can be challenging to gener-
ate images that close the synthetic-to-real domain gap in a
way that guarantees alignment with the generated labels. To
address this challenge, Fei et al. [8] proposed using domain
adaption to generate photorealistic images of crops from
synthetic images with semantically consistent labels. The
task was to train an image-to-image translation network on
unpaired images from the synthetic domain to the real one.
For this purpose they developed a semantically constrained
generative adversarial network (GAN), which extends the

cycle consistent adversarial network (CycleGAN) [32]. They
used CycleGAN to generate realistic fake images but added a
task-specific semantic constraint loss, which depends on the
task and network model. Fei at al. [8] showed that with this
additional loss the domain-adapted images keep spatial se-
mantics, such as plant position and size, and are aligned with
the generated labels. They also showed an improvement in a
fruit detection task when using the domain-adapted images
instead of rendered synthetic ones.

In a similar way, we used image-to-image translation
to adapt our synthetic data to the real domain. However,
we used the GAN-based Contrastive Unpaired Translation
(CUT) model proposed by Park et al. [17]. The CUT model
is related to CycleGAN but replaces the cycle consistency
loss with a contrastive loss on image patches. This change
achieves content preservation without the additional loss
function introduced by Fei et al. [8] to CycleGAN. It does so
by training a small multi-layer perceptron classifier to max-
imize the mutual information between a patch of the trans-
lated image and the source image. Imbusch et al. [10] showed
that using the CUT model is a viable approach to minimize
the synthetic-to-real domain gap in robotic systems. In this
work, we examined how domain-adapted images obtained
with the CUT model perform in the agricultural domain.



Figure 4. An example image from our synthetic dataset: (left) rendered, (middle) domain adapted, (right) generated labels, where red is crop,

green is broadleaf weed, and blue is grassy weed.

4. Validation
4.1. Datasets

To evaluate our synthetic dataset, we divided it into two
categories: (1) images rendered directly by the path tracing
algorithm in Blender, and (2) images that were adapted to
the real domain by passing the rendered images through an
image-to-image translation network. We trained the domain-
adaptation on 1,000 rendered and 1,000 real images over
400 epochs using random cropping (of size 512x512) as
data augmentation. After training, we applied the translation
network to all 12,000 rendered images, giving us a second
synthetic dataset of 12,000 images in the synthetic-to-real
domain. Figure 4 shows an example rendered image with its
corresponding domain-adapted image and generated label.

4.2. Image analysis

A subset of 1,000 out of 12,000 images was randomly se-
lected from each dataset. The images were passed through
a pre-trained, headless ResNet-50 network, with the default
ImageNet-1k weights provided by PyTorch. In addition, the
images were pre-processed using the transformations as-
sociated with the pre-trained network. The resulting 2048-
dimensional vectors were used to compare images with a
cosine similarity test and a t-distributed Stochastic Neighbor
Embedding (t-SNE) visualization.

Figure 5A shows the results of our cosine similarity test,
where we computed the cosine angle (the normalized dot
product) between two feature vectors for all images in the
real and synthetic datasets. Violin plots are used to visual-
ize the distributions for real images compared to all other
real images, rendered images compared to real images, and
domain-adapted images compared to real images. The main
observations are that: (1) the median cosine similarity for the
domain-adapted images is higher than for the rendered im-
ages, and (2) there is a larger proportion of domain-adapted
images in the third quartile (and above) than in the rendered
images. Overall, this suggests that there are many domain-
adapted images that are similar to the real images. The peaks
in the lower first quartile appear in all three distributions,
which implies a significant number of images have features
that are different from the majority of images—in terms of
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Figure 5. (A) Cosine similarity test between 1,000 images in the
real and synthetic datasets. The distributions are shown between
real and real images (excluding to the same image), synthetic and
real images, and domain-adapted and real images. (B) t-SNE plot
for the real (blue), synthetic (orange), and domain-adapted (green)
datasets. Each point represents an image, which was reduced to a
2-dimensional projection from the 2048-dimensional feature vector
extracted from a ResNet-50 network.

cosine similarity—in all three datasets.

The last part of our analysis compared the images using
an embedding visualization. Figure 5B shows the t-SNE plot
for real and synthetic datasets. Each point in the plot corre-
sponds to one image: blue points are real images, orange are
rendered synthetic images, and green are domain-adapted
synthetic images. Apart from a few outliers, we observed that
the real and domain-adapted images are clustered together in
the embedding. The rendered images, on the other hand, are
clustered together but separated from the real images. This
result further suggests that the final feature vectors of the real
and domain-adapted images extracted from the pre-trained,
headless ResNet-50 network are strongly similar, and the
feature vectors for the rendered images are less similar. Next,
we evaluate the performance of a neural network trained on
our synthetic data.

4.3. Evaluation of a crop-weed detection task

We evaluated our synthetic dataset by training two network
models to identify crops and weeds using semantic segmen-
tation. We selected semantic segmentation as for most crop-
weed detection applications, there is no need to differenti-
ate individual plants, and object detection methods result in



Table 1. Mean IoU values for weed and crop classes with different ratios of synthetic images to real ones. All results were tested on a
hold-out dataset of 3,981 real images of soybean fields. Abbreviations: SegF = Segformer, DeepL = DeepLabv3, Syn = rendered synthetic

images, Adap = domain-adapted synthetic images.

Training dataset mean IoU - Weed mean IoU - Crop
syn : real ratio SegF SegF  DeepL. DeepL | SegF SegF  DeepL. DeepL
Syn Adap Syn Adap Syn. Adap Syn Adap
12k : 0 0.0586 0.0652 0.0507 0.0574 | 0.5970 0.4461 0.3664 0.3858
10k : 2k (5:1) 0.3058 0.2808 0.3084 0.2807 | 0.8011 0.7928 0.7598 0.7513
8k : 4k (2:1) 0.3417 0.3047 0.3223 0.3017 | 0.8078 0.7993 0.7646 0.7568
6k : 6k (1:1) 0.3415 0.3170 0.3341 0.3245 | 0.8099 0.8022 0.7671 0.7629
4k : 8k (1:2) 0.3527 0.3250 0.3386 0.3245 | 0.8119 0.8042 0.7674 0.7629
2k : 10k (1:5) 0.3559 0.3385 0.3421 0.3323 | 0.8127 0.8071 0.7680 0.7658
12k : 12k (1:1) 0.3673 0.3418 0.3471 0.3290 | 0.8160 0.8095 0.7674 0.7653
0:12k 0.3519 0.3519 0.3381 0.3381 | 0.8126 0.8126 0.7684 0.7684

dense and colliding bounding boxes when the vegetation cov-
erage is large. Wang et al. [25] tested two fully-convolutional
neural networks (FCN)s, UNet and DeepLabv3+, on a sim-
ilar crop-weed detection task of real images taken from an
unoccupied aerial vehicle (UAV), and found the models per-
formed well in terms of the intersection-over-union (IoU)
metric. We chose to evaluate our synthetic dataset in the same
way using DeepLabv3 implemented in PyTorch’s torchvision
library [13] and Segformer [30] implemented in Hugging-
Face’s Transformers library [26].

We performed three experiments: (1) we varied the ratio
of synthetic to real images in the training data and tested
the models on a hold-out dataset of 3,891 real images of
soybean fields at various growth stages, (2) we tested the
same models from (1) on a dataset of cotton fields (without
training for the new crop), and (3) we set the number of real
images to 5,000 and varied the amount of synthetic data,
testing on the hold-out soybean dataset. For all experiments,
we used the ResNet-101 backbone for DeepLabv3 and the
MIT-BO backbone for Segformer. Both models were pre-
trained with ImageNet-1k weights, and we applied four data
augmentation techniques: translate and reflect, scale and
reflect, flip left-right, and contrast adjustment.

Table 1 and Fig. 7 show IoU values for weed and crop
classes as we varied the ratio of synthetic to real images used
for training. We split the dataset to 90% training and 10%
validation out of 12,000 images in total. The results show
that training the models on synthetic images alone under
performs compared to combining real and synthetic images.
However, combining synthetic images with even a small
number of real images provides a boost in performance. An-
derson et al. [2] observed a similar result for a segmentation
task in a car manufacturing application. Our data shows that
at a 1:2 ratio of 4,000 synthetic and 8,000 real images, both
models perform as well as (or better than) a real dataset with
12,000 images. In addition, combining all synthetic and all

real images, resulting in a training set size of 24,000 images,
outperforms training on 12,000 real images for both classes
and both models.

Figure 8 shows two examples of real images, their annota-
tions and the predicted labels from the fine-tuned Segformer
model. The examples were selected to highlight our observed
differences in predicted labels between the model trained
on 12,000 real labels and the one trained on 12,000 real
and 12,000 synthetic images. The example image shown in
Figure 8(a-d) shows that the model trained with synthetic
images correctly predicts the weed close to the most-bottom
row of crops (Fig. 8d), whereas the model trained on real
images (Fig. 8c) incorrectly labels the weed as crop. Fig-
ure 8(e-h) shows a case where the model trained on the
combined dataset incorrectly labels a weed partially as crop
(Fig. 8h), which was correctly identified by the model trained
on real data only (Fig. 8g). Please note that this particular
weed species was not modeled with our synthetic generation
pipeline. This might indicate that the synthetic dataset helps
to improve the labelling of modeled weeds growing close to
the crop, but reduces performance on weeds that were not
included in the synthetic dataset.

One surprising result of the first experiment is that the
domain-adapted images do not increase model performance.
Since our analysis showed that domain-adapted images are
more similar to the real images than the synthetic ones, we
expected better mean IoU values for domain-adapted im-
ages only compared to synthetic images only. In addition,
Imbusch et al. [10] reported improved mean IoU values for
CUT GAN translated images compared to their rendered syn-
thetic images. There may be several possible explanations,
including (1) our image analysis used a trained network with
ImageNet-1k weights so the feature vector may not capture
features relevant for training towards this particular vision
task, and (2) the CUT GAN-processed images contain arti-
facts that break the semantic consistency between the images
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Figure 7. Box plots showing the distribution of IoU values for weed
and crop classes for both models. A is the difference between the
target IoU and the baseline IoU, which is from the model trained
on 12,000 real images only.

and the generated labels (after all this method does not use
semantic constraint loss such as in the work of Fei et al.
[8]). For example, we observed that the CUT GAN model
occasionally added green patches of pixels in regions of the
image not labeled semantically as plants, which did not look
like plants, and therefore could introduce inconsistencies
between the images and the generated labels (see Fig. 6).
These types of hallucinations
are potentially caused by a
mismatch between features
present in the real images
that are missing from our syn-
thetic dataset. Specifically,
for images containing high
vegetative or soil debris cov-
erage the CUT GAN model
may have difficulty matching
information between images
of real plants and synthetic
ones.

Figure 6.
domain-adapted image.

Close-up of

Table 2 shows the results of testing the same models from
our first experiment on real images of cotton fields. In other
words, we tested our soybean-trained models on images of
a different crop to test how resilient the models are to out-
of-distribution test data. We observed a similar boost in per-
formance for both models except at a lower ratio of 2:1, i.e.,
8,000 synthetic images and 4,000 real images. This suggests
that our synthetic dataset may represent features found in
both the real soybean and cotton images even though it was
generated specifically for soybean. It may also suggest that
the combination of real and synthetic datasets generalizes
better than separate real or synthetic datasets. This is indi-
cated by the results of the different-ratio experiments shown
in Table 1 where the mean IoU for both models improves in
experiments starting from a ratio of 2:1 for the weed class
and 5:1 for the crop class compared to the real training data
baseline. In summary, the increased performance of models
trained with higher ratios of synthetic to real training data

Table 2. Mean IoU values for weed and crop classes with different
ratios of synthetic images to real ones trained on soybean crop
but tested on a cotton. Abbreviations: SegF = Segformer, DeepL =
DeepLabv3, Syn = rendered synthetic images.

Train dataset mloU - Weed mloU - Crop

syn : real ratio | SegF  DeepL | SegF DeepL
12k : 0 0.0427 0.0359 | 04626 0.2904
10k : 2k (5:1) 0.1203 0.1172 | 0.7232 0.6355
8k : 4k (2:1) 0.1439 0.1348 | 0.7256 0.6718
6k : 6k (1:1) 0.1446 0.1370 | 0.7214 0.6581
4k : 8k (1:2) 0.1549 0.1409 | 0.7285 0.6559
2k : 10k (1:5) 0.1553 0.1430 | 0.7155 0.6330
12k : 12k (1:1) | 0.1667 0.1411 | 0.7268 0.6412
0:12k 0.1429 0.1353 | 0.7173  0.6289

on cotton field test data may indicate better generalization to
out-of-distribution features compared to models trained with
real data only.

In the last experiment, we kept the number of real images
constant at 5,000, but increased the number of synthetic
images in the training dataset. Table 3 reports the mean
IoU per class for both models.We observed a slight linear
increase in performance when adding more synthetic images
for both classes and models. The results suggest that adding
synthetic data to a training dataset is a good approach when
real-annotated data is scarce. In particular, synthetic data
could be useful in training a model before fine-tuning with
real data.

5. Conclusion

We presented a fully automatic, procedural workflow to gen-
erate large-scale synthetic datasets in the agricultural domain.
On this basis, we generated a synthetic dataset of 12,000
images of soybean fields and used it to create a second set
of 12,000 domain-adapted synthetic images. We analyzed
the synthetic images by performing a cosine similarity test
and a t-SNE embedding visualization, showing the synthetic
images are similar to the real ones. We then evaluated both
datasets by training a Segformer and DeepLabv3 model on
various combinations of real and synthetic datasets, and
tested the models on hold-out datasets of real images of soy-
bean and cotton fields. We found that, for our crop-weed
image segmentation task, synthetic images were an effective
data augmentation strategy, confirming similar results from
non-agricultural domains [2, 10].

In contrast to Imbusch et al. [10], however, we found
that the models trained on rendered synthetic images or the
domain-adapted counterparts showed similar mean IoU val-
ues for our segmentation task. A possible reason for this dis-
crepancy may be the difference in scene complexity—natural
scenes like fields of crops are more difficult to model than
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Figure 8. Two example images from the real dataset, their manually-annotated labels, and two Segformer-based predictions: (1) trained on
12,000 real images and (2) trained on a combined 12,000 real and 12,000 synthetic images. The labels are overlaid on the images with green

used for crops and red for weeds.

Table 3. Mean IoU values for weed and crop classes. The models were trained with a constant number of real images but augmented with
different numbers of synthetic images. Testing was done on a hold-out dataset of 3,981 real images of soybean fields. Abbreviations: SegF =
Segformer, DeepL = DeepLabv3, Syn = rendered synthetic images, Adap = domain-adapted synthetic images.

Training dataset mean IoU - Weed mean IoU - Crop

SegF SegF  Deepl. DeepL | SegF SegF  Deepl. DeepL

Syn Adap Syn Adap Syn. Adap Syn Adap
10k synth + Sk real | 0.3351 0.3139 0.3269 0.3043 | 0.8080 0.8017 0.7640 0.7556
8k synth + Skreal | 0.3285 0.3119 0.3263 0.3010 | 0.8071 0.8022 0.7660 0.7578
6k synth + Skreal | 0.3341 0.3144 0.3303 0.3117 | 0.8073 0.8012 0.7659 0.7596
4k synth + Skreal | 0.3264 0.3035 0.3312 0.3118 | 0.8057 0.7984 0.7652 0.7597
2k synth + Skreal | 0.3318 0.2971 0.3277 0.3107 | 0.8056 0.7975 0.7649 0.7598
0 synth + 5k real 0.3237 0.3237 0.3155 0.3155 | 0.8036 0.8036 0.7638 0.7638

cluttered tabletop scenes of man-made objects—where the
CUT GAN-based domain adaption method may not perform
as well. In addition, Imbusch et al [10] trained a network
model for semantic segmentation from scratch on 450,000
images, whereas we used pre-trained models with ImageNet-
1k weights and mixed up to 24,000 real and synthetic images.
Fei et al. [8] did report an improvement in a fruit detection
task with domain-adapted images but with low numbers of
training images—Iless than 50—and marginal improvement
for slightly more images.

We conclude that training vision models with splits of
synthetic and real data in the agricultural domain can lead
to the same or better performance compared to real train-
ing datasets of the same size. Further, we found that models
trained on combinations of real and synthetic datasets of crop

fields generalize better than models trained on real datasets
to other images of real fields. This seems to be especially
useful for training resilient models for agriculture-specific
vision tasks considering the large amount of variability in
crop appearance, management strategies, geographical and
seasonal differences. Next, we plan on evaluating the charac-
teristics of our synthetic data to find features that contribute
to model performance and identify edge-cases where real
data is lacking and synthetic data can provide a boost in
performance. One way forward is to use the Deep Gener-
ative Ensemble framework proposed by van Breugel et al.
[22], which helps to approximate the posterior distribution
of generative models, identifying low-density regions of the
original data.
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