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Abstract

Robotic harvesting has the potential to positively impact
agricultural productivity, reduce costs, improve food qual-
ity, enhance sustainability, and to address labor shortage.
In the rapidly advancing field of agricultural robotics, the
necessity of training robots in a virtual environment has be-
come essential. Generating training data to automatize the
underlying computer vision tasks such as image segmen-
tation, object detection and classification, also heavily re-
lies on such virtual environments as synthetic data is of-
ten required to overcome the shortage and lack of variety
of real data sets. However, physics engines commonly em-
ployed within the robotics community, such as ODE, Sim-
body, Bullet, and DART, primarily support motion and col-
lision interaction of rigid bodies. This inherent limitation
hinders experimentation and progress in handling non-rigid
objects such as plants and crops. In this contribution, we
present a plugin for the Gazebo simulation platform based
on Cosserat rods to model plant motion. It enables the sim-
ulation of plants and their interaction with the environment.
We demonstrate that, using our plugin, users can conduct
harvesting simulations in Gazebo by simulating a robotic
arm picking fruits and achieve results comparable to real-
world experiments.
Supplemental Material: An accompanying video can be
found on https://youtu.be/r8Q31w4bNbs show-
ing the experiments presented in this paper.
Plugin and Source Code: Upon request, we are happy to
share our GAZEBOPLANTS plugin open-source (MPL 2.0).
Keywords: Agricultural Robotics, Cosserat Rods, Gazebo,
Plant Dynamics, Simulation, Virtual Environments.

1. Introduction

Robotics has demonstrated its efficacy across a broad spec-
trum of applications, ranging from the assembly of automo-
biles in factories using manipulator arms like those manu-
factured by KUKA, to streamlining household chores such
as vacuuming through the utilization of mobile robots like
iRobot’s Roomba. The structured nature of these artifi-
cially created environments has propelled significant ad-
vancements in research within these domains over the past
few decades. However, the progress of robotics in agri-
cultural applications has been comparatively less conspic-
uous, primarily due to the inherent unstructured and clut-
tered characteristics of agricultural environments. Never-
theless, there exists a pressing necessity for the advance-
ment of agricultural robots to ensure food security for a
growing global population in a sustainable manner [1], as
well as to tackle issues like labor shortages.

While it is feasible to benchmark and assess different
methods for a specific task within structured environments,
such as picking a mug off a table, achieving a fair eval-
uation in agricultural settings is more challenging. Using
the harvesting scenario as an illustration, several complex-
ities arise. Firstly, no two plants, even of the same breed,
possess identical structures. Secondly, once a fruit is har-
vested, reassessment becomes impractical. Thirdly, acces-
sibility issues, such as cost or geography, can vary signifi-
cantly among different plant varieties.

We believe that simulating plants will play an impor-
tant role in addressing this disparity, akin to how progress
in applications within structured environments was com-
plemented by the development and accessibility of various
simulation environments, as exemplified by [2, 3]. Simula-
tion tools for robotics contribute significant value, not only
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in the realm of robot learning but also in the crucial phase of
verification before the deployment on physical robotic sys-
tems. This verification process is vital to ensuring the safety
and functionality of both the robot and its operational en-
vironment. Particularly in data-intensive methods such as
reinforcement learning, direct data collection on the robot
may prove inefficient and potentially unsafe. Moreover, it
encounters limitations in scalability, given the costs asso-
ciated with employing multiple physical robots simultane-
ously to expedite the learning process. In contrast, simula-
tion, as demonstrated in recent work like Issac Gym [4], al-
lows several robots to learn in parallel and from each other,
minimizing wear and tear on the robot and reducing risks
to the environment. These simulation tools provide realistic
sensing and testing capabilities that are not yet fully realized
in agricultural settings.

The underlying computer vision tasks of agricultural
robotics comprise, among others, image segmentation, ob-
ject detection and classification. Addressing these tasks us-
ing state-of-the-art machine learning relies on the availabil-
ity of sufficient training data. Such data can be generated
in virtual environments resulting in large sets of synthetic
data [5]. The use of synthetic training data in agricultural
robotics has already been successfully demonstrated, for
example, for the particular application of harvesting sweet
pepper [6].

From a more general perspective, according to Gartner1,
the majority of training data will anyhow be synthetic by the
end of 2024. In particular, for automatizing computer vision
tasks, the quality of these synthetic data sets is crucial and
requires accurate simulations in virtual environments.

In this paper, we introduce a novel simulation framework
for plants integrated as a plugin within the Gazebo system
[7]. Our simulation framework not only encompasses sim-
ulated plants that dynamically respond to robot interactions
but also incorporates the crucial functionality of the robot
manipulator in detaching fruits. Furthermore, we conduct
comprehensive calibration tests across various parameters
to ensure a realistic and accurate simulation environment.

2. Related Work

The relevant prior work includes contributions to plant sim-
ulation, virtual environments for robots, and the application
of robots in agriculture.

Plant Simulation. Numerical methods for the simula-
tion of plant dynamics can be divided into two categories
based on the discretization approach. The first one involves
discretizing the plant into a mesh and using, for example,
the Finite Element Method (FEM) [8, 9], while the second

1https : / / techmonitor . ai / technology / ai - and -
automation / ai - synthetic - data - edge - computing -
gartner

Figure 1. Visual comparison of simulation and real-world sce-
nario: UFactory Lite 6 robotic arm picking cherry tomato using
our custom gripper (left) and our corresponding simulation in the
virtual environment (right).

one involves discretizing it into a skeleton and, among oth-
ers, using Position-Based Dynamics (PBD) [10].

To implement constraints between particles, PBD is of-
ten combined with Cosserat rods. This classical model has
been introduced first in visual computing by [11] to simulate
more physically accurate bending and twisting effects. The
classical model as well as several modern adaptations have
been widely utilized for the simulation of fiber-like objects
such as threads and hair [11–20].

In addition to the dynamics of the plant itself, some re-
search focuses on other natural phenomena related to plants.
This includes aspects such as plant growth [21], the effect of
water in plants on plant morphology [22, 23], the formation
process of complex root architectures [24], the combustion
of plants [25], the interaction between climate and vegeta-
tion [26], the influence of the environment on plant shape
[27–31], the simulation of the cambium of trees [32], and
modeling and simulating plant flowers [33, 34]. A botanical
material model is proposed in [35] aiming for generating au-
thentic simulations rooted in the biomechanics of trees. The
development of complex ecosystems is simulated in [36].

Virtual Environments for Robots. There are various
simulation platforms such as Webots [37] and MuJoCo [38]
that are widely used in robotics. We chose Gazebo [7] to
integrate our plugin as it comes with easy integration with
ROS, one of the standard frameworks for deploying robotic
systems. With additional support in ROS for various sen-
sors such as vision and LIDAR, research in complex envi-
ronments is made feasible. There has also been enormous
development to support different plugins in Gazebo such as
articulated rigid objects interacting with fluid [39], simu-
lating radio frequency identification for industrial applica-
tions [40], and transceiver for rescue operations [41], which
demonstrates its broad range of applications.

Robotic Applications in Agriculture. Previous con-
tributions tackle various agricultural tasks using different
robots like harvesting [42], phenotyping [43], and navigat-
ing in crop rows [44] by utilized simulation tools. In [42],
sweet pepper plants are modeled in a virtual robot experi-
mentation platform (VREP) to develop vision-based control
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methods in reaching a target pepper. However, the detach-
ment of the pepper is not simulated to perform the harvest-
ing task. In the case of [43], plant volume and height are
estimated in ROS-Gazebo where the CAD models of plants
are developed in SketchUp. Using such synthetic data is
more feasible than manual collection in the field where hu-
man errors can affect the ground truth. Autonomous navi-
gation in crop rows is also studied in [43, 44] but both works
are limited by the static nature of the CAD plant models as
the dynamic behavior of plants, when external objects inter-
act, is not simulated, causing a sim-to-real gap.

Other works include deploying artificial plant billboards
like in [45], which capture the visual appearance of the plant
well, but fail to mimic its dynamic motion. Another recent
work [46] developed a physical proxy for grasping apples
but it does not account for interactions with other parts of
the plant. A more recent work [47] utilized Unity’s frame-
work for the dynamic behavior of plants allowing robot-
plant interaction in studying autonomous reaching of prun-
ing targets, but the detachment of plant parts is not consid-
ered. Our proposed work not only allows for robot-plant
interactions but also simulates the detachment of fruits, fur-
ther motivating researchers to develop autonomous harvest-
ing techniques.

Paper Outline. The remaining sections of the paper are
structured as follows: Section 3 covers the methodology be-
hind our plugin as well as implementation details such as
the interaction between the plugin and the simulation plat-
form Gazebo. Section 4 comprises experiments, encom-
passing the impact of plant parameters on plant behavior,
experiments related to fruit harvesting, and a comparison
between simulation results and real-world outcomes. Con-
cluding remarks are provided in Section 5.

3. Methodology

3.1. Interaction Framework

We developed our plant simulation plugin by utilizing the
Gazebo World plugin as its foundation. Within Gazebo’s
world file, users are required to specify the robot’s name,
which will interact with the plant. In the initialization phase,
the plugin then retrieves the geometric information of the
robot object from Gazebo and subsequently constructs data
structures for collision detection. It proceeds to generate the
plant model using a combination of cylinders and spheres.
The whole pipeline is shown in Figure 2. Given that we em-
ploy a position-based simulation method, the plugin only
needs to periodically request the specific robot’s pose in-
formation from Gazebo at each time step. Since our imple-
mentation takes the form of a Gazebo plugin, users maintain
the versatility to utilize our plugin with any library that pos-
sesses the capability to interface with Gazebo, such as ROS
and MoveIt.

Figure 2. During initialization, Gazebo loads the world file, and
within the parameters of our plugin, users need to specify both the
plant file and the name of the robot intended to interact with the
plant. Subsequently, the plugin proceeds to generate the plant as
a combination of cylinders and spheres within the Gazebo envi-
ronment, retrieving the robot’s geometric data from Gazebo. Dur-
ing each physics time step, the following sequence of actions un-
folds: Firstly, the robot’s pose is updated, then it interaction with
the plant is computed, and lastly, the pose of each individual com-
ponent of the plant is reported back accordingly. Users can manip-
ulate the robot by interfacing with Gazebo through widely used
libraries such as ROS and MoveIt.

3.2. Position and Orientation Based Cosserat Rods

We choose to adopt the Position-Based Dynamics (PBD)
framework, as detailed in [48] to model plant branches as
Cosserat rods. The Cosserat theory models a rod as the
curve r(s) : R → R3 along the centerline. As shown
on the left in Figure 3, for each point on the curve, there
is an orthonormal frame with basis {d1(s),d2(s),d3(s)},
where d3(s) is the tangent direction of the curve. To estab-
lish this coordinate system, we rely on a quaternion q(s),
which serves as the means to rotate the basis vectors from
the world coordinate system. The strain measure for bend-
ing and twisting is determined using the Darboux vector
Ω(s) which is defined as

Ω(s) = 2q̄(s)
∂

∂s
q(s) ,

where q̄ denotes the conjugate quaternion. Because some
rods have an initial bending and torsion, we denote the rest
pose Darboux vector as Ω(s)0. Thus, the strain measure of
bending and torsion is defined as

∆Ω(s) = Ω(s)− Ω(s)0 .

To discretize the curves, each rod element comprises two
adjacent particles and a quaternion that holds both the po-
sition and orientation information of the coordinate system,
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Figure 3. Illustration of the plan discretization in which {dk} de-
notes the local coordinate system for the Cosserat rod.

as shown in Figure 3. The Darboux vector should be also
discretized between each neighbor rod. The derivative of
the quaternion is discretized by a finite difference approxi-
mation ∂qi/∂s = (qi+1 − qi)/li, where li denotes the aver-
age length of neighbor rods i and i + 1. Thus, the discrete
Darboux vector is defined as

Ωi =
2

li
(q̄iqi+1) .

Here, to handle the ambiguity introduced by dropping the
real part of the quaternion in [48], we employ the aug-
mented Darboux vector [49] as above.

Within the PBD framework, we adopt a pair of con-
straints to enforce the desired behavior of the plant. Specif-
ically, we make use of a stretch and shear constraint Cs.
This constraint is designed to approximately preserve the
rod’s length and relies on the configuration of two endpoints
p1 and p2, and on an its length and original orientation d3:

Cs(p1,p2,d3) =
1

l0
(p2 − p1)− d3 ,

where l0 represents the rest length of each rod. To simulate
bending and twisting behavior, we use constraint Cb, which
is defined based on the difference between the Darboux vec-
tor Ω at the current pose and the rest pose:

Cb(q1, q2) = Ω− sΩ0 ,

s =

{
+1 for |Ω−Ω0|2 < |Ω+Ω0|2 ,
−1 for |Ω−Ω0|2 > |Ω+Ω0|2 .

This adjustment of s is necessary to move the rod to the
nearest rest pose since Ω and −Ω represent the same rota-
tion.

3.3. Collision Detection and Response

In our simulation, we represent the rod as a capsule body,
with radius information stored at each node. To simplify
the modeling of fruits, we model them as spheres that are
attached to a specific node.

Resolving collisions involves separating the two collid-
ing objects by pushing them away from each other along the

Figure 4. (a) portrays a plant through the use of multiple curves.
Through the process of sampling along these curves, connecting
the branches, and introducing leaves, we can transform it into (b),
which represents a plant through a collection of particles linked by
a graph. (c) depicts the plant, as represented by (b), in the physical
world. (d) illustrates the action of harvesting a cluster of fruits
from the plant.

normal vector at the point of collision. When dealing with
self-collisions, the collision pairs include capsule-capsule,
capsule-sphere, and sphere-sphere interactions. We calcu-
late the collision position and its corresponding normal fol-
lowing the methodology outlined in [50].

We implement the robot/plant interaction as a one-way
coupling, where the robot can move the plant but the plant
does not affect the robots movement. This is a reasonable
assumption for crop plants but may be less suitable for tim-
ber scenarios. The collision pairs in the crop context then
include interactions between the sphere and the robotic arm,
as well as between the capsule and the robotic arm. To han-
dle collisions with the robotic arm, we utilize a Signed Dis-
tance Field (SDF)[51]. This approach enables us to effi-
ciently determine the closest distance from any point to the
robotic arm and obtain the corresponding normal direction.
In the case of collisions involving the capsule body and the
robotic arm, we performed equidistant sampling along the
main axis of the capsule body. Subsequently, we identified
the location of the collision as the point with the closest dis-
tance among all the sampled points.

3.4. Plant Fracture

Our framework supports plant fracture (Figure 4.d) through
the assessment of strain. When a stretch or bending con-
straint value Cs or Cb exceeds a predefined threshold Cmax

s

or Cmax
b , the corresponding rod element between the parti-

cles is fractured and removed from the system. Further-
more, any constraints associated with this particular rod are
also eliminated.

3.5. Plant Model

We model plants by hand drawing curves for individual
branches in 3D space (Figure 4.a). We then densely sam-
ple these curves using a step size smaller than the closest
distance between any two curves. We establish a threshold,
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Figure 5. Plant behaviors with different σdistance =
0.02, 0.035, 0.05 m. For all three results, σstiffness = 2 × 104 and
ρ = 300 kg/m3.

Figure 6. Plant behaviors with different σstiffness = 1, 2, 3×107 Pa.
For all three results, σdistance = 0.02 m and ρ = 300 kg/m3.

denoted as σconnect, to add the branch connections. Nodes
on one branch are connected to the endpoints of the nearest
other branches when their distance is less than this thresh-
old. This connection process is performed through breadth-
first search, commencing from the specified root node, en-
suring that the resulting connected graph forms a tree struc-
ture.

Next, we simplify the nodes within this tree by setting
a distance threshold, denoted as σdistance. Initially, certain
nodes must be preserved, including junction nodes (nodes
with a degree greater than 2) and leaf nodes (nodes with a
degree equal to 1), referred to as key nodes. Subsequently, a
depth-first search begins from the root node, and if the dis-
tance d from a node u to a preserved node v in its ancestry
is less than σdistance, then node u is also preserved. For key
nodes, if their d is less than 0.5σdistance and v is not a key
node, then node v is no longer retained. This approach pre-
vents the issue of two retained nodes being too close to each
other. Finally, we specify certain nodes for adding leaves
or fruits, and we have predefined leaf templates for adding
leaves.

Now, we represent the plant as a graph structure, where

Figure 7. Plant behaviors with different ρ =
300, 600, 900 kg/m3. For all three results, σdistance = 0.02 m and
σstiffness = 2× 107 Pa.

each edge in this graph corresponds to a rod, as illustrated
in Figure 4.b. Even when dealing with leaves, rather than
for a representation using individual triangles, we also treat
their mesh as a graph. Each rod is subject to both stretch
and shear constraints, and for every pair of adjacent rods,
we add bend and twist constraints.

4. Experimental Results
4.1. Plant Parameters

We conduct several experiments to demonstrate that vari-
ous plant parameters can influence the stiffness exhibited
by plants. These parameters include σdistance, used during
the simplification of the plant model, the plant’s stiffness
parameter σstiffness, and the density of the plant’s stem ρ.

In the Cosserat rod model, the stiffness of a plant is
closely related to the number of nodes it possesses. When
trees have a greater number of nodes, the system’s degrees
of freedom increase, resulting in an overall softer behav-
ior of the plant. We have the ability to manage the num-
ber of nodes by modifying the distance parameter σstiffness
during the tree creation process. As depicted in Figure 5,
a smaller distance yields a greater number of nodes, caus-
ing the branches to exhibit more sag due to the influence of
gravity.

In addition to the indirect influence of the number of
nodes, we also have a direct parameter σstiffness that allows
us to set Young’s modulus at each node of the plant. This
direct parameter gives us control over the stiffness of the
plant. For herbaceous plants, σstiffness can be set in the order
of 106 ∼ 107Pa, while for woody plants, it can be set in
the order of 108 ∼ 1010Pa. As depicted in Figure 6, from
left to right, an increase in σstiffness results in the branches
exhibiting a straighter behavior.

To align the plant with the target, the user will also need
to specify the density of the plant’s material. In the case of
herbaceous plants, the typical density falls within the range

5



Real

s s s s s s s s

Figure 8. Performing a calibration experiment to identify the threshold for fruit detaching in Gazebo by comparing to a real demonstration
where the robot moves upwards to detach the fruit. It is ensured that the manipulator’s trajectories in the real demonstration and simulation
are similar. The snapshots shown here are taken just before the moment of detachment for various stress thresholds Cmax

s (labeled at the
top) with the corresponding time taken to detach (labeled at the bottom). We observe that the detachment time in simulation is closest to
the real demonstration at Cmax

s = 0.1, and as Cmax
s increases or decreases, the detachment time also increases or decreases respectively.

Qualitatively, we also notice that the shape of the plant in simulation matches closest to the real demonstration at Cmax
s = 0.1. It is

particularly noticeable at a higher Cmax
s = 0.25, where the plant in simulation stretches further than at Cmax

s = 0.1.

Real

s s s ss s s s

Figure 9. Performing a calibration experiment to identify the threshold for fruit detaching in Gazebo by comparing to a real demonstration
where the robot moves horizontally away from the plant. It is ensured that the manipulator’s trajectories in the real demonstration and
simulation are similar. The snapshots shown here are taken just before the moment of detachment for various stress thresholds Cmax

s

(labeled at the top) with the corresponding time taken to detach (labeled at the bottom). We observe that the detachment time in simulation
is closest to the real demonstration at Cmax

s = 0.1, and as Cmax
s increases or decreases, the detachment time also increases or decreases

respectively. Qualitatively, we also notice that the shape of the plant in simulation matches closest to the real demonstration at Cmax
s = 0.1.

It is particularly noticeable at a higher Cmax
s = 0.35, where the plant in simulation stretches further than at Cmax

s = 0.1.

of 200 to 1000 kg/m3. In Figure 7, we present the results
with three distinct density values. A larger plant density
leads to an increased bending under the influence of gravity
and to a reduced susceptibility to external forces such as
wind.

All experiments are conducted on a workstation with
NVIDIA RTX 3090 GPU and Intel Xeon Gold 6136
3.00 GHz CPU. For σdistance = 0.02 m, the maximum num-
ber of rods in the scene is 2 242, with a 0.93 simulation to
real-time ratio.

4.2. Calibration for Fruit Detachment

Since fruit detachment depends on the value of the strain
constraint threshold Cmax

s , we perform a calibration using
real world measurements. In particular, we perform two
calibration experiments: The first one involves detaching
the fruit in an upward motion of the robot (Figure 8), and
the second one involves a horizontal motion away from the
plant (Figure 9). For the demonstration of fruit detaching
using the UFactory Lite 6 robotic arm, we used an artifi-
cial cherry tomato branch and a custom gripper as shown
in Figure 1. We chose this gripper design over traditional
scissors-based such as [52] to avoid causing damage to the

plant. We measure the time to detach the fruit from the start
of the robot’s motion as reported at the bottom of each snap-
shot in Figure 8 and Figure 9.

In both cases, we notice that at Cmax
s = 0.1, the time

taken to detach on the real system and in the simulation are
similar. As seen in the figures, as the value of the stress
threshold increases, Cmax

s > 0.1, there is an increase in the
stretch of the plant, and for lower thresholds, the stretch is
not as pronounced.

4.3. Comparison with Reality

To demonstrate the practicality of our simulator, we con-
ducted a comparison between real-world outcomes and sim-
ulated results. Employing a robotic arm, we harvested a
tomato in a greenhouse. Subsequently, we constructed a
model of a similar plant and, by adjusting its parameters,
successfully aligned the simulation results with the real-
world outcomes in Figure 10.

As the tomato plant which we have harvested has been
fixed from the upper end and suspended from a beam, at-
tempting to pick the fruit by pulling would result in a sig-
nificant displacement of the entire plant, exceeding the con-
trol range of the robotic arm. Consequently, we opted for a

6



E
xp

er
im

en
t

Si
m

ul
at

io
n

t

Figure 10. Selected frames extracted from the real-world harvesting sequence (top row) demonstrate the actual tomato retrieval process
using a robotic arm in a greenhouse. The corresponding frames at the bottom row depict our simulation results, showing the similarity
between simulated and real-world harvesting scenarios.

bending method to harvest the fruit. During the simulation,
we set the bending threshold between the two segments con-
nected to the fruit Cmax

b to 0.31. The full experiment is
shown in the accompanying video.

5. Conclusion

In this project, we have developed a plant simulator plu-
gin for Gazebo, based on Position-Based Dynamics (PBD)
and Cosserat rods. The plugin facilitates interaction be-
tween robots and plants, especially in the context of fruit
harvesting. We support two methods for fruit picking:
Stretching and bending. Compared to existing harvesting
robots that use scissors, the stretching method closely re-
sembles human picking, causing less damage to plants. On
the other hand, the bending method allows for harvesting
within smaller spaces. The comparison of simulation re-
sults with real-world outcomes validates the accuracy of our
approach. We believe that our plugin enables users to train
their harvesting robots, not limited to cherry tomatoes, for
autonomous picking. This has the potential to enhance pro-
ductivity and reduce labor costs by allowing robots to au-
tonomously harvest a variety of crops.

While our plugin is a step towards realistic simulation of
plants, there are limitations: The plant sags due to gravity
instead of staying in the position we modeled. To stay in
the initial position requires a large hardness value, which
affects the dynamics of the plant; a better approach would
be to model the plant to fall due to gravity, but this effect is
not linear and requires the user to change the initial position
of the plant several times. To solve this problem, the initial
Darboux vector should be tuned by optimization.
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[8] Y. Zhao and J. Barbič, “Interactive authoring
of simulation-ready plants,” ACM Trans. Graph.,

7

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21709
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21709


vol. 32, no. 4, jul 2013. [Online]. Available:
https://doi.org/10.1145/2461912.2461961 2

[9] H. Wang, M. Kang, J. Hua, and X. Wang, “Modeling
plant plasticity from a biophysical model: biomechan-
ics,” 11 2013. 2

[10] C. Deul, T. Kugelstadt, M. Weiler, and J. Bender,
“Direct position-based solver for stiff rods,” Computer
Graphics Forum, vol. 37, no. 6, pp. 313–324, 2018.
[Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1111/cgf.13326 2

[11] D. K. Pai, “Strands: Interactive simulation of thin
solids using cosserat models,” Computer Graphics
Forum, vol. 21, no. 3, pp. 347–352, 2002. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.
1111/1467-8659.00594 2

[12] J. Spillmann and M. Teschner, “CORDE: Cosserat
Rod Elements for the Dynamic Simulation of
One-Dimensional Elastic Objects,” in Eurograph-
ics/SIGGRAPH Symposium on Computer Animation,
D. Metaxas and J. Popovic, Eds. The Eurographics
Association, 2007.

[13] D. L. Michels, J. P. T. Mueller, and G. A. Sobottka, “A
physically based approach to the accurate simulation
of stiff fibers and stiff fiber meshes,” Computers
& Graphics, vol. 53, pp. 136–146, 2015. [Online].
Available: https://www.sciencedirect.com/science/
article/pii/S0097849315001624

[14] D. L. Michels, V. T. Luan, and M. Tokman, “A stiffly
accurate integrator for elastodynamic problems,”
ACM Trans. Graph., vol. 36, no. 4, jul 2017. [Online].
Available: https://doi.org/10.1145/3072959.3073706

[15] F. Bertails, B. Audoly, M.-P. Cani, B. Querleux,
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