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CONTROL OF DEVELOPMENT IN THE BIFURCATING BRANCH SYSTEM OF TABEBUIA 
ROSEA: A COMPUTER SIMULATION' 

ROLF BORCHERT AND HISAO HONDA 

Department of Physiology and Cell Biology, University of Kansas, Lawrence, Kansas 66045; and Kanebo Institute for Cancer 
Research, Misakicho 1-9-1, Kobe 652, Japan 

A computer model, simulating geometry and development of the branch system of Tabebuia rosea DC., 
was constructed. Early in development there is a transition from symmetric bifurcation and exponential 
increase in branch number to asymmetric branching, manifest in the morphological differentiation into lead- 
ers and lateral shoots and in the progressive reduction of increase in branch numbers. This reduction is an 
inherent geometric property of botanical trees and similar, branched systems. It results from the discrepancy 
between the increase in crown surface with the second power of branch order and the exponential increase 
in branches supplying the surface. In symmetric branching, mother and daughter branches are arranged in 
the same plane; in asymmetric branching, branch planes of leaders and laterals are inclined against each 
other. Development was assumed to be controlled by flux distribution within the tree: (1) Flux supplied to 
a terminal branch determines its vigor and branching potential. (2) Asymmetric branching results from 
asymmetric flux distribution. (3) Feedback interaction between main and lateral branches causes "apical 
control," i.e., enhanced growth of leaders as compared with lateral branches. (4) Growth of the branch 
system as a whole is limited by the sigmoid increase with time in flux to the tree. Reiteration of the set of 
geometric and developmental rules simulates time-dependent changes during normal development and re- 
generation of the branch system, which are strikingly similar to those observed in growing Tabebuia trees, 
suggesting that simulated controls are similar to those operating in real trees. 

Introduction 

Understanding of trees, the largest and most 
complex plants, has advanced significantly during 
the past decade (TOMLINSON 1983). (1) The prin- 
ciples of construction underlying the enormous va- 
riety in tree architecture, as observed particularly 
in tropical trees, has been analyzed (HALLI et al. 
1978). (2) Increasing use of computers has enabled 
progressively more precise quantification and sim- 
ulation of branch systems of trees (LOCK and LOCK 
1982). (3) The interrelation between tree structure 
and water relations, i.e., the hydraulic architecture 
of trees, has been studied experimentally (ZIM- 
MERMANN 1978; EWERS and ZIMMERMANN 1984). 
(4) The mechanical design of trees has been ana- 
lyzed in detail (MCMAHON 1975a; WILSON and 
ARCHER 1979). 

Mathematical models analyze trees at various 
levels. In the simplest case, the elements of a 
branched system are described and quantified (LOCK 
and LOCK 1982). The geometry of small, treelike 
systems was first modeled by HONDA (1971), based 
on relatively few parameters such as branch angle, 
branch unit length, and ratio between lengths of 

1 In memory of MARTIN H. ZIMMERMANN, Charles Bullard 
Professor of Forestry at Harvard University and director of 
the Harvard Forest, Petersham, Massachusetts, who died on 
March 7, 1984. 

Manuscript received August 1983; revised manuscript received 
November 1983. 

Address for correspondence and reprints: Dr. ROLF BOR- 
CHERT, Division of Biological Sciences, University of Kansas, 
Lawrence, Kansas 66045. 

consecutive units. This geometric branch model was 
then used to simulate the regular, bidimensional, 
plagiotropic branch system of Terminalia catappa 
(FISHER and HONDA 1977) and to show that this 
branch system is optimized for maximum light in- 
terception (HONDA and FISHER 1978). Simple geo- 
metric considerations reveal that the branch num- 
ber in such a branch system must be progressively 
restricted at higher branch orders, i.e., that bifur- 
cation ratios must decline with increasing size of a 
tree (BORCHERT and SLADE 1981). Mechanisms to 
achieve this reduction in branch numbers through 
branch interaction were explored by HONDA et al. 
(1981). 

In studies of the hydraulic architecture of trees, 
ZIMMERMANN (1978) observed that water flow to 
lateral tree branches is restricted relative to flow in 
the main trunk, presumably resulting in enhanced 
growth potential and, hence, "apical control" by 
the leader. 

To gain a better understanding of the control of 
development in trees as complex branched sys- 
tems, we combined mathematical rules determin- 
ing the specific branch geometry with postulated 
developmental controls, based on the hydraulic ar- 
chitecture of trees, in a simulation of the relatively 
simple, bifurcating branch system of Tabebuia ro- 
sea, a tropical tree. 

Material and methods 

The morphology of shoot growth and branching 
in Tabebuia rosea DC. (Bignoniaceae), as ob- 
served in San Jose, Costa Rica, was described in 
detail (BORCHERT and TOMLINSON 1984). 

The program for simulating the development of 
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the branch system of Tabebuia was written in FOR- 
TRAN and executed on the University of Kansas 
Honeywell System. Output was printed on a DEC- 
WRITER IV or plotted on a Hewlett-Packard HP21 
Plotter. 

Simulation of the tridimensional branch system 
of Tabebuia was based on the geometric branching 
model of HONDA (1971), modified as described be- 
low. As many important structural and functional 
properties of branched systems reveal themselves 
only at higher orders of branching, up to 15 orders 
of branching were calculated. A branched system 
of 15 orders contains 215 = 32,768 potential links 
(= branch points). To minimize the problems re- 
sulting from the complexity of such a system, the 
simulation program was aimed at attaining the fol- 
lowing goals: (1) generating a variety of outputs 
that facilitate analysis of the dynamics of branch- 
ing and its control in entire trees or single branches; 
(2) minimizing computing time and memory re- 
quirements; and (3) maintaining adaptability of the 
program to the modeling of branch systems of dif- 
ferent architecture. 

MAIN CHARACTERISTICS OF THE PROGRAM 

1. As each link (Pi) gives rise to two daughter 
links (P2j and P2i?l), the branch system is ordered 
and numbered as a binary tree (fig. 1). Where 
branching is unequal (asymmetric), the daughter 
link on the main branch (leader) is even numbered 
(P20), and the lateral is odd numbered (P2ill). Im- 
plicitly, all links of order N are numbered between 
2N and (2N?1 - 1); numbers of all links on main 
branches are multiples of 2; and numbers of lat- 
erals are multiples by 2 of an odd number, which 
indicates the site of insertion of the lateral on the 
leader (fig. 1). 

2. At higher branch orders, only a small fraction 
of potential branches actually exists in a botanical 
tree. To reduce memory requirements by ca. 90%, 
only information for the first three orders of links 
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FIG. 1.-System of branch numbering used in computer 
simulation of Tabebuia branching. Branch numbers of minor 
lateral branches were omitted. 

(23 = 8) was stored entirely. At higher orders, links 
for 12 orders (orders 4-15) of only one tree quad- 
rant were considered. An array corresponding to 
the set of all potential links in this quadrant con- 
tains references to a table that stores the following 
information for each actual link: number; order; x, 
y, and z coordinates; branching angle; flux; branch- 
ing potential; number of descendant links. 

3. Coordinates of links in quadrants 2-4 are cal- 
culated by rotating quadrant 1 one to three times 
around the z-axis by 900 (divergence angle ax of 
HONDA [1971]). This mode of calculation confers 
a radial symmetry to the tree model, which is more 
similar to the radial symmetry of botanical trees 
than the bilateral symmetry around the x- and y- 
axes, which results if the absolute values of x and 
y coordinates of corresponding links in all four 
quadrants are kept equal but changed in sign in the 
various quadrants. 

4. Bidimensional projections of any quadrant or 
of the entire tree (x-y, x-z, or y-z projection, with 
or without perspective) can be drawn by plotter 
(figs. 2, 3); numbers (fig. 1), fluxes, or branch an- 
gles of all links can be printed or drawn by the 
plotter. Symbols and definitions of branching and 
control parameters are in table 1. 

Results 

GEOMETRY AND CONTROL OF BRANCHING: 
OBSERVATIONS AND ASSUMPTIONS 

BRANCHING GEOMETRY.-Tabebuia represents the 
architectural model of Leeuwenberg as described 

FIG. 2.-Projections (x-y on left, y-z on right [to avoid ex- 
cessive density, projection of two quadrants only]) of a sym- 
metrically branched tree without perspective. A -C, Order N 
= 5 to N = 8 without reduction in branch number at higher 
order. 01 = 02 = 210; RI = = 1; Rf = 0.5; F1 = 30. D, 
Branch reduction at order N = 8 resulting from use of Rf = 
0.7 andF, = 17. 



186 BOTANICAL GAZETTE [JUNE 

FIG. 3.-Simulation of the branch system of Tabebuia for 
11 orders using the default parameters listed in table 1. Pro- 
jection (y-z) of all four quadrants of the tree with perspective. 

in HALLE et al. (1978). As in most trees of the 
Bignoniaceae, leaves are decussate. Initially, sap- 
lings form a straight, unbranched stem. Growth 
of the terminal bud is then arrested, and shoot growth 
continues by the symmetric outgrowth of two op- 
posite, lateral buds. The plane of each bifurcation 
is perpendicular to that of the previous one. 
Branching remains limited to terminal branch units, 
giving rise to an apparently dichotomous branch 
system (fig. 4). During symmetric branching in the 
young branch system, each daughter segment forms 
an angle of 210 with the parent axis (OB); consec- 

utive branch units are of about equal length; and 
both daughter branches appear equally vigorous (fig. 
4). 

Beginning at order 4 or 5, branching becomes 
increasingly asymmetric: the outermost daughter 
branch increases in vigor, and its branch angle de- 
creases; in its less vigorous sister branch, the branch 
angle increases, and branch unit length becomes 
less than that of the mother branch (figs. 4, 5). The 
result of this asymmetric branching is a clear mor- 
phological differentiation into relatively straight and 
thick main branches (leaders) and weaker branches 
(laterals), which alternate along the leader and have 
branch angles at least twice those of the leader (figs. 
5, 6). In older trees, additional branch systems, 
identical with that described above, may originate 
at the level of the first bifurcation of the older tree 
(reiteration; HALLE et al. 1978), eventually giving 
rise to an erect tree consisting of a set of super- 
imposed, cup-shaped crowns (BORCHERT and TOM- 
LINSON 1984). 

Symmetric branching of Tabebuia at orders 1- 
4 can be simulated by the "horizontal plane model" 
(H-model, figs. 2, 7; HONDA et al. 1982). In the 

TABLE 1 

SYMBOLS OF BRANCHING AND CONTROL PARAMETERS AND DEFAULT VALUES USED IN 

SIMULATIONS OF TABEBUIA BRANCHING 

Symbol Definition Value 

Branching geometry 
B . . Total number of branches in tree 
Bf .......... Number of actual branches as fraction of potential branches 
N ............ Branching order of tree quadrant' (N = NT - 2) or discrete time in 

computer simulation 
N ........... Number of reiterations for which nonbranching terminal branch survives 3 
NT . ........... Branching order of whole tree 
Pi = PB ....... Branch point 
P2i ............ Daughter branch point on vigorous (main) branch 
P21-I .......... Daughter branch point on less vigorous (lateral) branch 
RI, R2 . ........ Ratio of length of main or lateral branch unit to length of its mother unit 1, .85 
T .......... Number of terminal branches on tree 
T . .......... Number of arrested terminal branches on tree 
T ........... Number of terminal branches supplied by branch point P2, 
T. ....... Number of terminal branches supplied by branch point P2i- 
8 ... ......... Angle of inclination in branching plane in degrees 25 
OB ............ Branch angle (in degrees) in symmetric branching 21 
01 ,2 ......... Branch angles of main and lateral branches (in degrees); branch angles are 10, 32 

opposite in sign, and signs alternate in consecutive orders 
Flux distribution 

F. .......... Flux to branch point Pi 
F2i, F2iI ...... Fluxes to daughter branch points 
F I . ......... Flux to PI of tree quadrant 17 
F M ...... Flux gradient in leader with branch interaction 
F ...... Flux gradient in leader without branch interaction 
Frnin .......... Minimum flux needed for branching 
FN . ......... Flux to tree quadrant at order N 
FT .......... Flux to terminal branch unit of leader of tree quadrant 
Rf . ......... Flux ratio determining the fraction of Fi going to F2, .7 
Rred . ......... Factor reducing exponential increase in Fv with increasing N .895 

'As explained in Material and methods, branch simulation is done for one quadrant of the tree only, beginning 
with branch points of order 3. 
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FIG. 7.-Branching geometry in the horizontal plane (H- 

model) and inclined plane (I-model) models. In the H-model 
the mother branch unit PA PB and the daughter branch units PB P2i 
and PBP,_1 are in the same branch plane. 0, (riot labeled) and 
02 are the branch angles. In the asymmetric branching shown, 
01 < 02. Branch length ratios are R1 = PBP'i/P4lPB =1 and 
RN = PBP2i-]/PAPB= 0.85. In the I-model, branch plane 
P.4 PB P2i-, containing the lateral branch and angle 02, is in- 
clined by angle 8 against plane PAPBPj,, containing the main 
branch with small 0, and R,1 1. 

simulation, branch angle OB was chosen to make x 
and y coordinates of links in order 4 equal and to 
obtain a slope equal to that of the main branches 
of the tree. This is necessary because the position 
of simulated branches remains unchanged while the 
position of branches in real trees is usually adjusted 
through the formation of reaction wood (WILSON 
and ARCHER 1979). In Tabebuia, such an adjust- 
ment is reflected in the upward curvature of main 
branches (fig. 6, right). Asymmetric branching at 
higher orders does not conform to the basic as- 
sumption of HONDA'S model that mother and 
daughter branch units are contained in the same 
plane. Instead, the plane containing the less vig- 
orous (lateral) daughter branch is inclined by angle 
8 against the plane containing the main branch; i.e., 
the two sister branches form a dihedral with the 
angle (180 - 8) between them (inclined plane model 
= I-model; planes PAPBP2i VS- PAPBP2i+1 in fig. 
7; compare fig. 6). Calculations to obtain coordi- 
nates of the links of the tree in the H - and I-models 
are in the Appendix. 

Analogous to the initial asymmetric branching in 
Tabebuia (fig. 4), transition from symmetric to 
asymmetric branching was simulated at order 4 by 
assigning branching parameters of main branches 
(leaders, 01 = 10, Rf = 1) to the "outer" daughter 
branch with greater distance from the z-axis (fig. 
7), and branching parameters of lateral branches 
(02= 32, Rf = 0. 8) to the "inner" daughter branch. 
The sum of branching angles used for asymmetric 
branching (0 + 02 = 42?) is within the range of 
measured values (40?-43?). In descendants of a main 

branch, asymmetry was maintained, and the ob- 
served alternation of laterals along the leader was 
achieved by alternating the signs of 01 and 02 at 
consecutive bifurcations (fig. 1: branches 1-2-3, 
2-4-5, 4-8-9, etc.). In descendants of laterals the 
outer daughter branch again became the new main 
branch (fig. 1: branches 2-5-10-20, 4-9-18-36, 
etc.). 

CONTROL OF BRANCHING.-In contrast to math- 
ematical, binary trees, the branch system of Ta- 
bebuia does not constitute a geometric series in 
which every terminal branch unit gives rise to two 
daughter branches. At branch orders greater than 
5 or 6, continued symmetric bifurcation of all ter- 
minal branches would produce very dense trees (fig. 
2C), in which the surface area available for the 
display of leaves borne by terminal branches 
decreases to unrealistic, very small values (BOR- 
CHERT and SLADE 1981). In Tabebuia, as in most 
botanical trees, lateral branches cease branching at 
rather low orders (fig. 6). In the branch system of 
Rhus typhina, the increase in the number of ter- 
minal branches follows a sigmoid rather than an 
exponential curve (data of J. WHITE discussed in 
BORCHERT and SLADE [1981]). 

HONDA et al. (1981) explored two theoretical 
constraints on branching of terminals: (1) exoge- 
nous or environmental control, where branch in- 
teraction such as shading causes the number of per- 
manent branches to fall with increasing tree age 
through abortion or inhibition of bifurcation, and 
(2) endogenous control, in which the different 
growth potential of sister branches is the result of 
different flow rates to sister branches. 

The open and very regular branching pattern of 
Tabebuia is the consequence of limited growth and 
branching of the lateral branches inserted along the 
few leading branches of the cup-shaped crown (fig. 
6). Branching occurs exclusively in terminal branch 
units on the crown surface (fig. 6), and cessation 
of branching in the less vigorous terminal branches 
cannot be the result of shading or a similar exog- 
enous mechanism of branch interaction but must be 
controlled within the branch system. In this study, 
we assumed that asymmetric branching results from 
asymmetric distribution of fluxes supplying apical 
meristems with materials needed for growth. Dif- 
ferences in flow rates between main and lateral 
shoots are suggested by differences in branch di- 
ameters (figs. 5, 6). Unequal flux of water in branch 
pairs with asymmetric bifurcation has been ex- 
perimentally demonstrated in diffuse-porous hard- 
woods and in conifers and was attributed to vas- 
cular constrictions in lateral branches (ZIMMERMANN 
1978; EWERS and ZIMMERMANN 1984). 

In unequal flux distribution, main branches re- 
ceive more than half of the flux from the mother 
branch, i.e., flux ratio Rf > 0.5. Fluxes to daughter 
branches are then 
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F21 = FiRf (1) 

F2i+I= F, (1 - Rf). (2) 

Flux to a branch is a function not only of supply 
by the root system and geometry of the conducting 
elements but also of the driving force generated in 
the leaves by transpiration and, hence, of the leaf 
area supplied by a branch. Assuming that each ter- 
minal branch bears the same leaf area, flux distri- 
bution between any two sister branches below the 
terminal branches will then be a function of the 
ratio between the number of terminal branches sup- 
plied by main and lateral branch (Tm, Tlat) in ad- 
dition to the flux ratio: 

F21+ 1 = F1 (1 -Rf) Tlat/Tm, (3) 

F2i = Fj F2 +1 l (4) 

With increasing size (maximum branch order N) 
of a tree, the size of its root system increases. As 
the capacity of the root system to expand is limited 
by the physical constraints of the soil and com- 
petition with other trees (BORCHERT 1978), the size- 
dependent increase of flux into the tree trunk and 
the number of leaf-bearing branches will eventu- 
ally level off. 

In the model, slowdown of exponential increase 
in flux with increasing order was achieved by ex- 
ponentiation with a factor Rred, whose value is re- 
duced with increasing N: 

a = (N - 1) RredN, where Rred < 1. (5) 

Flux into the tree quadrant is then for each order 

FN= F1 2. (6) 

Because of the size-dependent increase of flux 
into the tree, flux distribution to each link within 
the entire tree must be recalculated after each in- 
crease in order, according to equations (3)-(6). 

As N represents both the number of orders in the 
branch system and the number of discrete time units 
in branch simulation, equation (6) constitutes a dif- 
ference equation describing the time course of the 
driving variable "flux." 

Each terminal branch in Tabebuia has three de- 
velopmental options: shoot growth with branching, 
shoot growth without branching, and cessation of 
shoot growth. Flux was assumed to determine branch 
vigor and, hence, branch development as follows: 
(1) Terminal branches receiving Fi > Fmin continue 
to branch; (2) terminals receiving Fj < Fmin survive 
for N, additional increments during which their flux 
remains constant; then they die, and their flux be- 
comes zero. The default value for the survival time 
N, of nonbranching terminals was chosen arbitrar- 
ily, as there are no observations. 

SIMULATION OF BRANCH DEVELOPMENT 

BRANCH GEOMETRY.-A comparison (figs. 2C, 
3, 6) shows the improvement of geometric simi- 
larity between the real and simulated branch sys- 
tems of Tabebuia resulting from the introduction 
of improved rules for simulating branch geometry 
and reduction in branch number. The effect of tilt- 
ing the branching plane (I-model, Appendix) and 
of reducing branch unit length is illustrated in fig- 
ure 8. As a consequence of the control mechanism 
discussed below, in the simulated branch system 
(fig. 8C, D ) as in the real tree (fig. 6), all laterals 
along a leader grow to about the same length, caus- 
ing progressively larger gaps between the tree sec- 
tors at higher orders of branching (figs. 6, 8D), 
i.e., a decline in crown density. 

The reduction of crown density caused by the 
assumed endogenous control mechanism is re- 
flected in the following quantitative changes dur- 
ing development of the simulated branch system 
(fig. 9): (1) During symmetric branching, up to 
branch order 5, the numbers of total branches (B) 

A I ~ ~ ~ 

FIG. 8.-Effect of inclined branching plane, branching ratio, and order on the geometry of the simulated branch system. A, 
Branch system calculated according to the H-model with 8 = 0, R, = R, = 1; B, according to the I-model with 8 = 250; C, 
reduction of branch unit length in lateral branches by R. = 0.85. In A -C, order NT = 12. D, Parameters as C, but NT = 15. 
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FIG. 9.-Quantitative changes within a simulated tree (see 
fig. 3) with increasing order. A, Decline in the fraction of ac- 
tual branches relative to potential branches as obtained from 
branch simulation (B1) and as predicted by the function N2/2' 
(F1). B, Changes in the number of total branches (B ), active 
(T) and inactive terminal branches (Tar). C, Increase in flux to 
the trunk of the tree (FA9) with increasing order, flux gradient 
within a main branch of 15 orders calculated with (F") and 
without (Fm) branch interaction, and flux to terminal branch 
unit of main branch (FT) as a function of increasing order NT . 
D, Changes in flux gradient in main branch (FM) with increas- 
ing order NT as a result of branch interaction causing apical 
control . 

and of terminal branches (T) increase exponen- 
tially (fig. 9B), constituting a geometric series in 
which the numbers of total and terminal branches 
are 2N+l and 2N, respectively. (2) At branch order 
5, asymmetric branching begins, and constraints 
on branching start taking effect; the number of 
branch units increases at a less than exponential 
rate (fig. 9B ), and the number of actual branches 
as a fraction of potential branches begins to decline 

4 2 2 4 3 =103 

3 

7 2 5 

1 1X 

24 344 1 
63731 7 3 

2 3 1 
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7 

4 3 
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92 1a wi.t 1 37 3, = 101 . 8/ *% ., ..10 

7 *-0 *..."-0 13 
0 o0 N 0 

branches at order N 10l have ceased growing because F. < 

F~~~~~~.~. 

(Bf in fig. 9A). (3) At order 6 the number of in- 
active terminal branches (Ta), i.e., arrested branches 
which in a real tree would eventually die, begins 
to rise rapidly and then approaches the number of 
active terminal branches (fig. 9B). 

The rapid decline in the fraction of actual branch 
units (Be) with increasing branch order (fig. 9A) 
resulted from empirically selecting a set of branch 
control parameters for optimum geometric similar- 
ity with real trees (table 1). A similar decline in 
the fraction of actual branches can be predicted on 
the basis of the following geometric considera- 
tions: Assume that in the crown of a tree such as 
Tabebuia all branch units are of the same length 
L, and all terminal branches and the leaf rosette 
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they bear are arranged in a hemisphere forming a 
monolayer of leaves. The radius of this hemisphere 
will be at each order 

RL= L N, where N is order number, (7) 

and the surface of the hemisphere (crown surface) 
will be 

SN= 0.5 4TTRL2=2 T (LN)2= kN2 (8) 

With symmetric branching, the number of poten- 
tial terminal branches would be 

B. (N) = 2N (9) 
In a botanical tree forming a monolayer of leaves 
on the crown surface, the leaves on each terminal 
branch will occupy leaf area LA, and the number 
of terminal leaf rosettes that can be displayed on 
the crown surface is 

Ba(N) = SN/LA = k, N2/LA = k2N2. (10) 

The number of actual terminal branches as a frac- 
tion of potential terminal branches will then be 

Pf (N) = Ba(N)/Bp(N) = k2N2/2N. (1 1) 

At k2 = 1, Pf (4) has the value of 1 (42/24 = 1). 
At higher orders, Pf declines rapidly (fig. 9A), pro- 
viding a measure of branch reduction and increas- 
ing asymmetry of the branch system. In symmetric 
branching, the same function describes the reduc- 
tion in crown surface area available to each ter- 
minal leaf rosette (BORCHERT and SLADE 1981). 

CONTROL OF BRANCHING BY ASYMMETRIC FLUX 
DISTRIBUTION. Flux distribution in branch sys- 
tems of orders N = 3-6 (fig. 10) illustrates the 
operation of the simulated control of branching by 
flux and represents the functional state of the branch 
system at consecutive developmental stages: (1) At 
each branch point, flux is divided asymmetrically 
between main and lateral branch. (2) At Rf = 0.7, 
the laterals receive only 30% of flux from the mother 
branch, and flux attenuation is more rapid in lateral 
than in main branches. (3) Increasing fluxes to the 
stems of consecutive orders reflect the size-depen- 
dent increase of flux into a tree. (4) The devel- 
opmental potential of each terminal branch is de- 
termined by its flux: branches with flux >5 (Fmin) 
bifurcate during the next reiteration; branches with 
flux <5 do not branch, and their flux remains the 
same until they cease growing after three (N) re- 
iterations (example: branch 45-35-11-3 at N = 
3; 63-55-12-3 at N = 4; and 80-73-10-0 at 
N = 5. (5) In spite of the manifold increase of flux 
into the tree between orders 3 and 6, flux to the 
terminal branch unit of each quadrant leader in- 
creases only moderately: 17-21-24-27 at orders 
3-6, 35 at order 10 (compare FT in fig. 9C). 

Beginning at order N = 4, flux to the terminal 
units of lower lateral branches declines below Fminn, 

arresting their further development (fig. 10). This 
trend has become very pronounced by order 10 and 
is accompanied by a marked delay of flux atten- 
uation in the lower segments of the main branch 
(fig. 10, FM in 9C). As size and order of the branch 
system increase, flux attenuation in the main branch 
occurs at progressively higher orders, while flux to 
the main branch terminal unit changes little (fig. 
9D). 

The two main driving variables, Rred and Rf, af- 
fect the development of simulated trees to varying 
degrees (table 2). Because of its use at the Nth 
power (eqq. [5], [6]), small changes in Rred strongly 
affect total flux to the tree (Flo) and, hence, the 
density of the entire branch system (total branch 
number B) and the ratio between active and in- 
active terminal branches (T, Tar, rows 1-5 in table 
2). Reduction of the flux ratio Rf from 0.7 to 0.63 
(flux to lateral branches 42%-59% of flux to main 
branches) affects density and branching potential 
(B, T, Tl) only little but significantly reduces the 
vigor of the leader's terminal shoot (FT) and im- 
plicitly the flux gradient in the leader and the de- 
gree of apical control (rows 5-8 in table 2). Sim- 
ilar effects of variation in flux ratio on branch 
geometry were found by HONDA et al. (1981; their 
figs. 9-11): an Rf value of 0.67, virtually identical 
with our value of 0.7, generated a branch system 
most similar to that of the tropical tree Tabernae- 
montana sp., which has an architecture similar to 
that of Tabebuia. 

As predictable from the data in rows 5-9 in table 
2, moderate random variations in flux ratio pro- 
duced only minor variation in branching patterns 
as compared with patterns generated with constant 
flux ratio (data not shown). 

REGENERATION. If the leader of a simulated 
branch system is removed, subsequent growth dis- 
plays the regeneration pattern observed in real trees: 
initially several lateral branches below the cut in- 
crease in vigor, but ultimately the uppermost lat- 
eral establishes apical control and repeats the 

TABLE 2 

EFFECT OF VARIATION IN SIZE-DEPENDENT FLUX INCREASE (Rd ) 

OR FLUX RATIO (R.) ON SELECTED PROPERTIES OF SIMULATED 

TREES AT NT = 10 AND F, = 17 

Rf Rred F0o FT T Ta, TJIT B 

1 . 7 .94 327 64 116 32 .28 296 
2 . 7 .93 257 56 100 36 .36 272 
3 . 7 .92 205 50 80 40 .50 240 
4 .... . 7 .91 166 46 64 44 .69 216 
5 .... . 7 .9 137 39 60 44 .73 208 
6 . 69 .9 137 36 64 44 .69 216 
7 . 67 .9 137 33 64 44 .69 216 
8 . 65 .9 137 28 72 40 .56 224 
9 .... . 63 .9 137 24 76 44 .58 240 

NOTE.-Variable names as defined in table 1. 
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A ~~~~B C DE 
FIG. 11.-Regeneration of branch system after pruning. A, Nonpruned branch of 12 orders (compare fig. 9D ). B -D, Leader 

was pruned at the same point (*) at times 7, 8, and 9, respectively, and then simulation was continued until time 12. The uppermost 
remaining lateral branch replaces the lost leader, but lower laterals may also temporarily increase in vigor. Branch angle of new 
leader was reduced during regeneration. E, Pruning of two lateral branches at time 7 and 8 (*) causes increased vigor of leader 
and lower laterals. 

branching pattern of a young tree (fig. 11) (reiter- 
ation; HALLE et al. [1978]). Pruning of laterals en- 
hances the vigor of the leader and of laterals above 
the cut lateral in accordance with the flux previ- 
ously supplied to the pruned lateral. 

Discussion 

GEOMETRY OF BRANCHING 

The geometric branching model of HONDA (1971) 
was used to generate branching patterns of indi- 
vidual branches or branch tiers of several tree spe- 
cies (FISHER and HONDA 1977; HONDA et al. 1981, 
1982) and has been used here to simulate devel- 
opment of the tridimensional branch system of an 
entire young tree up to 15 orders of branching. 
HONDA'S model has proved to be adaptable to trees 
of different geometric characteristics: the original 
horizontal plane model gave rise later to the per- 
pendicular plane (P -model; HONDA et al. [1982]) 
and now to the inclined plane model (I-model). 

The sigmoid increase in branch number (B in fig. 
9B) and the corresponding exponential decline in 
the fraction of actual, relative to potential, links at 
higher branch orders (Bf in fig. 9A) have been ob- 
served in real trees and in the simulation of Ta- 
bebuia branching. We have shown here that the 
gradual reduction of terminal branches in trees op- 
timized for display on the crown surface of a con- 
stant leaf area per terminal branch results from the 
basic geometric fact that terminal branches in a 
geometric series increase exponentially with order, 
while crown surface increases only with the second 
power of the crown radius. Increasing asymmetry 
of the branch system and reduction of branch num- 
ber by the relation N2/2N are thus inherent prop- 
erties of botanical trees and any other branched 
system in which a surface or volume is supplied 
by a branched network of conducting elements. This 
rule is comparable to other rules derived from geo- 
metric properties of organisms, such as elastic sim- 
ilarity in trees, the power law functions of loco- 
motion in animals, and the self-thinning rule (3/2 

power law) in plant population biology (McMA- 
HON 1975a, 1975b; WHITE 1981). 

SIMULATED FLUX DISTRIBUTION IN THE 
BRANCH SYSTEM 

The simulated gradients in flux distributions (fig. 
10) are remarkably similar to the gradients in leaf 
specific conductivity (flux/time/leaf area above 
branch point) measured in conifers and diffuse po- 
rous hardwood trees (fig. 12) (ZIMMERMANN 1978; 
EWERS and ZIMMERMANN 1984). Flux and, hence, 
vigor and branching potential decline slowly in main 
branches and rapidly in lateral branches. Simulated 
flux gradients and their change with increasing size 
of the branch system (figs. 9D, 10) result from the 
three assumptions expressed in equations (1)-(6). 

1. Unequal flux distribution between main and 
lateral branches (eqq. [1] and [2], as modeled by 
HONDA et al. [1981]), successfully reduces flux to 
laterals and, hence, their branching potential, be- 
cause flux is decreased exponentially as FN = F (1 
- Rf)N. At Rf 0.7, the lateral derivative of only 

52 24 

69 

84 62 

35 

110' 

37 

165\ g X 1 

208 

297 

FIG. 12.-Gradients of leaf-specific conductivity for water 
(flux/time/leaf area above branch point) in Tsuga (from EWERS 
and ZIMMERMANN 1984). 



1984] BORCHERT & HONDA-BRANCHING IN TABEBUIA 193 

three unequal bifurcations will receive 0. 33 or 2.7% 
of the flux entering the first branch. The similar, 
low vigor of all laterals along a leader (figs. 3, 6) 
is thus the result of similar flux gradients in these 
branches resulting from a constant Rf. Flux ratios 
also cause a rapid-and unrealistic-decline of 
fluxes within the leader (FN = F R1N; Fm in fig. 
9C). Continued growth of the leader and of the 
whole branch system is then possible only if flux 
to the tree increases exponentially with branch or- 
der, an assumption which is also unrealistic (see 
explanation for eq. [5]). Such an exponential in- 
crease in flux to the tree was implicitly assumed 
in the use of relative, not absolute, fluxes by HONDA 
et al. (1981). 

2. If flux to the tree is reduced with increasing 
order by a sigmoid growth function (eqq. [5] and 
[6]), then continued growth of the branch system 
is not possible without branch interaction favoring 
flux to the leader, because the exponential decline 
of flux in both leader and laterals causes flux to 
decline below the flux threshold Fmin, and branch- 
ing will cease. For instance, because of multiple 
terminal ramification and absence of apical con- 
trol, the density of the branch system of mistletoe 
(Viscum album) increases rapidly (cf. fig. 2C), and 
growth increments of all terminal branches start 
declining markedly at order 5 (LEGAY 1980). 

3. Feedback interaction between main and lat- 
eral branches (introduced by ratio TIat/Tm in eqq. 
[3] and [4]) enables continued growth of the branch 
system by establishing apical control, which man- 
ifests itself in the leader as slow flux attenuation 
and preservation of high vigor in the terminal branch 
(fig. 9C), in laterals as low vigor, arrested growth, 
and eventual death of lower lateral branches (fig. 
10, dotted branches at N = 10). 

VALIDATION OF THE MODEL 

The number of criteria for judging the realism 
of tree simulation has been augmented substan- 
tially. Validation of earlier simulations was usually 
limited to evaluations of geometric similarity be- 
tween real and simulated trees at a certain stage of 
development (HONDA et al. 1981, 1982; references 
in LUCK and LUCK [1982]). The present model per- 
mits assessment of the dynamics of growth and 
branching of each terminal branch and of the branch 
system as a whole. Not only the end result of sim- 
ulation but also the development of simulated trees 
of progressively higher order can be compared with 
that of real trees. Physiological mechanisms im- 
plied in the assumed control of branching can also 
be judged for compatibility with current physio- 
logical knowledge. 

Results of the simulation of Tabebuia branching 
meet the following criteria: (1) The geometry of 
simulated trees and changes in growth patterns ob- 
served with increasing size of the branch system 

are the result of manifold reiterations of the same 
developmental rules. (2) Within the limits of a de- 
terministic model, simulated trees are geometri- 
cally similar to real trees (figs. 3, 6). (3) With in- 
creasing order, the branch system of simulated trees 
undergoes the same quantitative changes as real 
trees: the number of total and terminal branch units 
follows a sigmoid time course; reduction of ex- 
ponential branching increases, and appearance of 
nonbranching terminals begins around order 5 (fig. 
9B). (4) Simulated trees manifest strong apical 
control: growth of laterals is markedly less vigor- 
ous, i.e., branching is less frequent, than that of 
main branches (fig. 3). (5) Flux entering the tree 
changes with increasing order in a sigmoid manner 
(fig. 9C); yet (6) flux to the terminal unit of the 
main branch varies little with increasing order (fig. 
9C). (7) Flux attenuation is slow in leaders, fast 
in lateral branches (fig. 10). (8) Regeneration of 
the simulated branch system in response to injury 
(pruning) is similar to that of real trees and reflects 
the potential response of the system to random de- 
struction of individual branches, which constitutes 
an important stochastic element in the morphogen- 
esis of most trees. 

The developmental rules used in the branching 
model were based on observations of growth pat- 
terns of real trees or on acceptable physiological 
hypotheses, partially supported by experimental 
evidence. The probability of generating realistic 
branch systems by the manifold reiteration of log- 
ically inconsistent rules is minimal. Thus, in spite 
of the gross oversimplifications made in this model 
with respect to branch geometry and develop- 
mental control, we may conclude that develop- 
mental controls similar to those simulated are likely 
to operate in real trees. 

IMPLICATIONS OF THE MODEL 

The assumed regulation of branching by a spe- 
cific pattern of flux distribution has several theo- 
retical implications: 

1. The simulated branch interaction consists in 
the competition of various branches for a limiting 
resource, namely, total flux entering the tree. The 
concept of "competition" constitutes a typical ex- 
ample of interaction between the individual mem- 
bers of a plant population. In the proposed model, 
competition is within a single organism between 
the individual branches of the branch population 
constituting the whole tree (WHITE 1979). Differ- 
ential resource allocation to competing organs within 
whole plants, e.g., to growing apical meristems 
versus growing fruits, is usually discussed in plant 
physiology texts, but the term "competition" is not 
found in the indices of most textbooks of plant or 
tree physiology, suggesting a basic deficiency in 
the conceptual analysis of the developmental con- 
trols of plants as branched systems. 
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2. Leading shoots in trees exercise apical con- 
trol-i.e., reduction in vigor of lower laterals- 
not apical dominance, i.e., suppression of the out- 
growth of lateral buds below the apical bud (ZIM- 
MERMANN and BROWN 1971). Apical control of the 
branch system is the result of a feedback mecha- 
nism favoring flux to the leader, as implied in 
equations (3) and (4). 

3. The diminishing rate of flux increase with 
higher branching orders is a manifestation of the 
common decline of the root: shoot ratio in trees of 
increasing size (BORCHERT 1976, 1978). It reflects 
environmental control of development of the tree 
as a whole but not of its specific branching pattern. 
As flux levels off at higher orders, it limits the 
number of terminal branches vigorous enough to 
branch and, because of apical control, enhances the 
arrest of development and ultimately death and 
abscission of the lower branches. 

4. The simulated branch system undergoes size- 
or age-dependent changes in overall structure, sim- 
ilar to those observed in botanical trees. These 
changes are the consequence of branch interaction 
within the tree (endogenous control) in conjunction 
with environmental limitations to growth imposed 
by the limited resources available to the root sys- 
tem (exogenous control). 

Most branching models devised to date are either 
strictly descriptive or lack branch interaction (LOCK 
and LOCK 1982). In branching models without 
branch interaction, growth and branching of each 
element depend only on its own state or on the in- 
teraction between the terminal branches and their 
environment (e.g., MEINHARDT 1976). The theo- 
retical analysis of developmental algorithms has 
shown that many types of branching cannot be pro- 
duced by interaction-free lineage algorithms but must 
originate from interactive algorithms (LINDEN- 
MAYER 1982). In their evaluation of branching 
models in plants, LOCK and LOCK (1982) also 
stressed the need for interaction between two dif- 
ferent levels of integration, those controlling 
branching (i.e., geometry or tree architecture) and 
growth potential, and recommended introduction 
of sigmoid growth functions to limit growth of the 
branch system as a whole. Control of growth by a 
hypothetical ascending gradient, analogous to the 
flux gradient of the present model, was modeled 
by FRIJTERS (1978). 

Our results suggest that any realistic simulation 
of the development of the branch system in botan- 
ical trees requires at least four sets of rules ad- 
dressing (1) geometry of the branch system, (2) re- 
duction of branch numbers at higher orders through 
reduction of branching in lateral branches, (3) the 
establishment of apical control through branch in- 
teraction, and (4) control of growth of the branch 
system as a whole by a sigmoid growth function. 

In essence, the model of Tabebuia branching 
represents a paradigm of the "open" or "continu- 
ous" development of plants. The same structural 
elements or modules, terminal leaf-bearing branches, 
are repeatedly added to the existing branch system 
and generate a characteristic spatial pattern, the ar- 
chitecture of Tabebuia. The method used to sim- 
ulate the development of Tabebuia is identical with 
that of GREEN and POETHIG (1982): a set of rules 
determining tree architecture was obtained by "dif- 
ferentiation" from the actual sequence of devel- 
opmental stages and combined with a differential 
equation describing the time course of flux as the 
driving variable of branch growth. Consecutive de- 
velopmental stages were simulated by integration, 
i.e., by deriving the next developmental stage from 
the present state of the branch system while re- 
taining the unaltered parts of the system. GREEN 
and POETHIG deduced this procedure from devel- 
opmental sequences in cells, tissues, or individual 
organs. The procedure has been applied here to the 
development of the organ system in an entire plant, 
a branched tree. 

While certain rules of the simulation reflect the 
genetically fixed determinants of Tabebuia archi- 
tecture (e.g., the species-specific mode of sym- 
podial branching, branch angles, greater vigor of 
outer branches), the repeated execution of the ge- 
netic program for the production of one branch 
module is unlikely to be under genetic control and 
has been postulated to result from the distribution 
of "metabolic flux," i.e., a biophysical parameter. 

The observed and simulated size-dependent 
changes in the branching pattern of Tabebuia im- 
ply changes in the efficiency of the branch system 
for the display of leaves to light, i.e., changes in 
the adaptive geometry of the tree, and changes in 
the mechanical properties of branches (BORCHERT 
and TOMLINSON 1984). The dynamics of these pro- 
cesses in simulated branch systems will be ana- 
lyzed in future studies. 
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Appendix 

CALCULATION OF COORDINATES OF LINKS 

H-MODEL. -Coordinates of the daughter links P2j and 
P2j j are calculated from branch angle OH and from co- 
ordinates of points PA (XA YA ZA ) and PB (XB YB ZB ) as fol- 
lows (fig. 7, table 1) (HONDA et al. 1982): 
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xj = XB + Rk (u cos Hj - L v sin Oj/M) 

YJ = YB + Rk (V cos 01 + L u sin Oj/M) 

Z= ZB + Rk W COS Oj, 

where U = XB - XA, V = YB YA, W ZB ZA, L 
U2 + V2 +W 2, M = U+V2, j = 2i, 2i + 1, and k 

= 1, 2. 
I -MODEL.-Coordinates for branch point P2j +1 are ob- 

tained as follows (fig. 7): 

XL v cos 8 + u w sin 6 i 
Xj = xB + Rk u cOS -, M sin Oj 

zLu cos 8 - v w sin 8A 
YJ = YB + Rk Lv cos H + 0 u sin Oi 
Zj = ZB + Rk(W cos Oj + M sin 8 sin Oj), 

where j = 2i + 1, k = 2; u, v, w, L, M as above. Qj 
and 8 must have the same sign. Coordinates for branch 
point P2j are calculated as in the H-model. 
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