
CGP 5 
Dr Wojciech Palubicki 



Shadows 

 



Shadow mapping 

 



Phase 1: Render from Light 

• Depth image from light source 



Phase 1: Render from Light 

• Depth image from light source 



Phase 2: Render from Eye 

• Standard image (with depth) from eye 

Eye 



Phase 2: Project to light for shadows 

• Project visible points in eye view back to light source 

Eye 

Projected depths match for light and eye.  VISIBLE 



Phase 2: Project to light for shadows 

• Project visible points in eye view back to light source 

Eye 

Projected depths from light, eye not the same.  BLOCKED 



Visualizing Shadow Mapping 

• A fairly complex scene with shadows 

the point 

light source 



Visualizing Shadow Mapping 

• Compare with and without shadows 

with shadows without shadows 



Visualizing Shadow Mapping  

• The scene from the light’s point-of-view 

from the eye’s point-of-view 

again 



Visualizing Shadow Mapping  

• The depth buffer from the light’s point-of-view 

from the light’s point-of-view 

again 



Visualizing Shadow Mapping  

• Projecting the depth map onto the eye’s view 

FYI: depth map for 

light’s point-of-view 

again 



Green is where the light 

planar distance and the 

light depth map are  

approximately equal 

Grey is where 

shadows should be 

Visualizing Shadow Mapping  

• Comparing light distance to light depth map  



Notice how 

specular 

highlights 

never appear 

in shadows 

Notice how 

curved 

surfaces cast 

shadows on 

each other 

Visualizing Shadow Mapping  



Depth Map Bias 

 

Eye 

numerical error 



Too little bias, 

everything begins to 

shadow 

Depth Map Bias 



Too little bias, 

everything begins to 

shadow 

Too much bias, shadow 

starts too far back 

Depth Map Bias 



Too little bias, 

everything begins to 

shadow 

Too much bias, shadow 

starts too far back 

Right amount of bias 

Depth Map Bias 



Slope Scaled Bias 

float bias = max(0.05 * (1.0 - dot(normal, light)), 0.005);  



Percentage closer filtering (PCF) 

• Goal: avoid stair-stepping artifacts  

• Similar to texture filtering 



Percentage closer filtering (PCF) 

• Goal: avoid stair-stepping artifacts  

• Similar to texture filtering 



Percentage closer filtering (PCF) 

• Instead of looking up one shadow map pixel, look up several  

• Perform depth test for each shadow map pixel  

• Compute percentage of lit shadow map pixels and use for coloring 



Exercise – Shadow Mapping 

 



Framebuffer objects 

//Generate Framebuffer 
FramebufferObject = 0; 
glGenFramebuffers(1, &FramebufferObject); 
glBindFramebuffer(GL_FRAMEBUFFER, FramebufferObject);  
 
//Generate depth texture  compare to LoadTexture function! 
glGenTextures(1, &depthTexture); 
glBindTexture(GL_TEXTURE_2D, depthTexture); 
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, 1024, 1024, 0, GL_DEPTH_COMPONENT, 
GL_FLOAT, NULL); 
 



Framebuffer objects 

//Filtering 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); 
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); 
 
//Attach depth texture to frame buffer 
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, 
depthTexture, 0); 
glBindFramebuffer(GL_FRAMEBUFFER, 0); 



Phase 1: render depth map from light’s 
perspective 
• Bind buffer  glBindFramebuffer(GL_FRAMEBUFFER, 

FramebufferObject); // check out setup of framebuffer in init function 

• Create orthogonal projection matrix  glm::ortho<float>(-20, 20, -20, 
20, -20, 30); 

• Create Camera matrix with inverse light direction  glm::lookAt(-
lightDir, glm::vec3(0, 0, 0), glm::vec3(0, 1, 0)); 

• Concatenate above matrices with model matrix of object and send to 
GPU  create new draw method that uses depth shaders only 

• Unbind framebuffer after finishing drawing ALL objects to depth 
texture  glBindFramebuffer(GL_FRAMEBUFFER, 0); 



Phase 1: Vertex Shader 

layout(location = 0) in vec3 vertexPosition; 
 
uniform mat4 lightMVP; 
 
void main() 
{ 
 gl_Position =  lightMVP * vec4(vertexPosition, 1.0); 
} 



Phase 1: Fragment Shader 

#version 430 core 
 
 
void main() 
{ 
 
} 



Phase 2: draw objects with shadows 

• Clear the buffers!  glClear(GL_COLOR_BUFFER_BIT | 
GL_DEPTH_BUFFER_BIT); 

• Send light MVP matrix to GPU 

• Send both the object texture as well as its depth map to the GPU (you 
can use SetActiveTexture for both textures but the depth map texture 
should have the final parameter index of 1) 

• Draw objects using shadow mapping shaders (create a separate draw 
routine in your code) 



Phase 2: Vertex Shader 

• Create new shader file 
• Create light MVP matrix uniform  

• Rest as in “shader_tex.vert” but transform world space vertex positions also 
to light space and send them to fragment shader 



Phase 2: Fragment Shader 

• Create new shader file 
• As texture shader but add an extra variable of type sampler2D for the depth 

map 

• Create a shadow calulcation function that takes as input the transformed 
world space position passed from the vertex shader and returns a floating 
point number between 0 and 1  this is the shadow value 

• Apply perspective division on light space positions (divide .xyz of vector by .w ) 

• Project position values from [-1, 1]  [0, 1] 

• Sample depth value from depth map using projected position values 

• Compare to z value of projected positions – bias and return either 0 or 1 

• Mix color and shadow values to determine final color in ratios of e.g. 15% and 
85% respectively 



Add PCF (calculate weighted average shadow 
value using neighboring texel depth values) 

 

PCF standard shadow mapping 



Create a fancier scene with many objects 

 



Exercise – Dynamic Environment Map 

• 1. set viewport to texture size,  

• 2. clear buffers  

• 3. orient camera to represent view 
from current cube side  

• 4. render scene without the 
environment-mapped object  

• 5. loop 2,3 and 4 for all six cube 
sides  

• 6. restore previous camera 
parameters and viewport  


