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Next

Physics: translational and rotational
Newtonian physics, equations of motion for a
system of bodies (rigid body dynamics)

Numerical methods for integration
Collision detection and Spatial Structures

Advanced numerical methods for collision
detection
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Rigid body

* Arigid body is characterized by the region that
Its mass is at.

 The simplest rigid body is a single particle of
mass m that occupies a single location x.

* A particle system is a collection of a finite
number of particles p, (discrete body).



Physical model for a rigid body

Describe motion
Position, Velocity and Acceleration

Rotation, Angular velocity and Torque
Cartesian coordinates in 2D and 3D



Newton’s laws of motion

* Linear momentum
* Angular momentum
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Angular momentum

e Center of mass
* |nertia
* Torque



Particle kinematics 2D

* We start with a particle moving across the xy
plane

* Position attime t is
r(t) = x(t) + y(t)

or (x(t),y(t))



Particle kinematics 2D

* Velocity at timetis v(t) = 7 = (x,y)
e Speedis $§ = |v]

* Accelerationis a(t) =v =1+ = (¥, V)



Particle kinematics 2D
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Particle kinematics 2D

* Tangent is

T(t) = — = (cos(P(t)), sin(P(t)))
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s N(t) = (=sin(®(1)), cos(P(1)))



Particle kinematics 2D

* Tangent | |s

T(t) = — = (cos(@(t)), sin(P®(t)))

IvI

isN(t) = (— sin(CI)(t)) cos(P(t)))
* r, T, Nis the movmg frame (also Frenet Frame)
of the partlcl'e;(—m-bedyﬂn space)
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Particle kinematics 3D

e Position attime tis

r(t) = x(t) + y(t) + z(t)

or (x(t), y(t),z(1))



Particle kinematics 3D

* Velocity attimetis v(t) = 7= (x,y,2)
* Speedis s = |V
* Accelerationis a(t) =v =1+ = (X,V,2)



Particle kinematics 3D

* TangentisT(t) = %



Particle kinematics 3D

* TangentisT(t) = %
 We have an infinite set of possible vector

normalsto T



Particle kinematics 3D

* Define normal N as change of T, that is

T _ kN
ds

T

T~



Particle kinematics 3D

* Define normal N as change of T, that is

T — kN
das
e BinormalisB = T XN
1
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Particle kinematics 3D

* Define normal N as change of T, that is

T _ kN
ds

e BinormalisB = T X N

e r,T,N, 5 is the movi
(or body in space



Rigid Body Rotation

* R = [T N B] put in matrix form is the
rotation matrix of the body



Rigid Body Rotation

* R = [T N B] put in matrix form is the
rotation matrix of the body

* r(t) = R(t)r, + x(t) where x(t) is the
position of the center of the body



Rigid Body Rotation

* R = [T N B] put in matrix form is the
rotation matrix of the body

* r(t) = R(t)r, + x(t) where x(t) is the
position of the center of the body

* w(t), avector, is the angular velocity of the
body

— Its direction is the rotation axis

— It<s magcnitude is in rad /s



Rigid Body Rotation

* To determine R we calculate 7(t)




Rigid Body Rotation

* To determine R we calculate 7(t)

w

r =w(t) X r(t)




Geometric Interpretation of R

R(t1\




Geometric Interpretation of R

R(?/y R(t+1)
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Rigid Body Rotation

e We now consider the columns of the rotation
matrix

* WecomputeT = w(t) X T, N = w(t) X
NandB = w(t) X B



Rigid Body Rotation

e We now consider the columns of the rotation
matrix

* WecomputeT = w(t) X T, N = w(t) X
NandB = w(t) X B

« T, N and B are the velocities of the axes of
the moving frame (the columns of R)



Newton’s Laws

* Inertia, the tendency of an object to resist
change of motion

* Force, the mechanism by which inertia is
changed



Newton’s Laws

The second law is most useful to game physics
engines

It states that the application of an external
force on an object causes a change in the
object's momentum over time.

Mass is assumed to be always constant, so
d d

F = E(mv) = E(mv) = ma

Each of the vector quantities of position,

velocity, and acceleration is measured with

- e



From Force to Torque

* Removing log nuts with a wrench
 Exert a force on the end of the wrench, the
nut turns

 The longer the wrench, the easier (but slower)
the nut tur—-

F
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Torque T




Torque

Torque T

Force

o

T

r X F



Torque

* The ease of turning is proportional to the
length of the wrench and the force applied

* This product is referred to as torque or
moment of force

* Torqueisdefinedast = r X F

— Direction of torque is axis of rotation
— Length of torque isinrad/s



Multiple Torques

 Multiple torques (just like forces) are simply
added together

* T = ).;1; X F; (discrete body)



Momenta

e Quantification of Newton's Second Law
* How much motion does the body have?

— A lot means that a lot of force is needed to change
it
— Little means that little force is needed to change it



Linear momentum

* How much linear motion does a body have?
*p =mv = );m;v;
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Linear momentum

* How much linear motion does a body have?
*p =mv = );m;v;

* Linear momentum is conserved in a system
(all bodies dp/dt = 0)
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Linear momentum

* How much linear motion does a body have?
*p =mv = );m;v;

* Linear momentum is conserved in a system
(all bodies dp/dt = 0)

* Force integrates linear momentum directly

dp d(mv) dv

dt ~  dt Mg = ma =k



Angular momentum

* How much rotational motion does a body
have?

0L=



Angular momentum

* How much rotational motion does a body
have?

e L =1r Xp=



Angular momentum

* How much rotational motion does a body
have?

L =rXp=mr Xv



Angular momentum

* How much rotational motion does a body
have?

e L=rXp=mr Xv=)mrnXv,

* Right-hand rule of cross-product:

— Angular momentum refers to the tendency of the
body to rotate around a given axis, L

— The longer the axis, the harder it is to stop the
rotation



Angular momentum

* The derivative of the angular momentum is

torque (when the body does not change
shape, dr/dt = 0)

dL
at "



Center of mass

* |[n mechanical systems, each object can
behave as if its mass is concentrated at a
single point. The location of this point is called
the center of mass of the object.

* We compute the center of mass by a weighted
average of the body particles relative positions
x. and their respective masses m. (M is the
mass of the whole body)

Y — Y‘mix'i




Force projection

* When an external force F ., is applied to a
body from some position T

* We use the center of mass to split the force
between linear force and torque

F = Fext(Fext ' (rf - f))’
= Fext X (Tf _f)



The implementation of the model
so far

e Linear motion:
X



The implementation of the model
so far

e Linear motion:

X = X + dt*v
V



The implementation of the model
so far

e Linear motion:

X + dt*v
v + dt*a

X
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* Angular motion:
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dR
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* Angular motion:
R = R + dt*dR
dR = [omega*T, omega*N, omega*B]



The implementation of the model
so far

* Linear motion:

+ dt*v

+ dt*a

+ /m

X

Il
< X

Q
Il

* Angular motion:
R = R + dt*dR
dR = [omega*T, omega*N, omega*B]
omega?’



The implementation of the model
so far

* Linear motion:

+ dt*v

+ dt*a

+ /m

X

Il
< X

Q
Il

* Angular motion:
R = R + dt*dR
dR = [omega*T, omega*N, omega*B]

omegar’
L=1] X w



Moments of Inertia

 How difficult is it to set an object into rotation
around an axis?

* Rotational equivalent to mass for linear
movement
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Moment of Inertia

* Empirical studies for a single particle show
that the moment of inertia is mr?, where m is
the mass of the particle and 7 is its distance to

the axis.




Moment of Inertia in 2D

* The more a particle weighs or the further from

the center the harder to set the object into
rotation

* |[n 2D the moment of inertia is a single number
because we can only rotate in one plane

[= ) mil(x,y) - @I



Moment of Inertia in 3D

* Harder to express, because suddenly we can
rotate along an infinite number of axes
* Consider a particle

— Located at relative vector r
— Moving with linear velocity v = w X r



Mass matrix in 3D

X my, = mr; X (wXr) = Jw

L1



Mass matrix in 3D

X my, = mr; X (WX r) = Jw
V.2 4 72 —x.V. —x.7. |
yl l lyl 1
_ 2 2 _
Xy, X°+tz YiZi
_ _ 2 2
T XL ViZi YTz




Mass matrix in 3D

c Li=7r, Xmyv, = mr; X (wXr) = Jw
y24+2z2  —x —X,Z,
Yi j i iZi
_ _ 2 2 _
* Ji=m, XY XStz YiZi
_ _ 2 2
XiZ ViZi YTz

* L, =]l-a)_,justlike p = mv



Mass matrix in 3D

L, =1, Xxmyv, = mr, X (WX r;) = Jw
- , B B _
Y« +z XiYVi XiZi
_ _ 2 2 _
* J.=m, XY X+ Z YViZ,
_ _ 2 2
XiZ ViZi YTz

* L;=].w,justlike p = mv
* For the whole body we sum all the J; matrices
of the particles

cJ =i, L=]w



Mass matrix in 3D

L, =1, Xxmyv, = mr, X (WX r;) = Jw
- , B B _
Y« +z XiYVi XiZi
_ _ 2 2 _
* J.=m, XY X+ Z YViZ,
_ _ 2 2
XiZ ViZi YTz

* L;=].w,justlike p = mv
* For the whole body we sum all the J; matrices
of the particles

cJ =i, L=]w



Whole Model - Position

* Position, integrated from velocity x = v

* Velocity, derived from linear momentum
vV = p/m

* Linear momentum, integrated from force

p = Fext(Fext ' (rf o f))



Whole Model - Rotation

* Rotation, integrated from angular veolcity
R=[wXT wXN wXB]

* Angular velocity, derived from angular
momentum w = J 1L

 Angular momentum, integrated from torque

L= T = FextX(Tf_f)



From Particles to Rigid Bodies
A By

e Particles * Rigid bodies

_ No rotations 6 Dolf (translation +
rotation)
— Linear velocity e Linear velocity
only * Angular velocity

— 3 DoF



Flocking (C. Reynolds)

Reynolds, Craig (1987). "Flocks, herds and schools: A distributed behavioral model."
SIGGRAPH '87: Proceedings of the 14th annual conference on Computer graphics and
interactive techniques (Association for Computing Machinery): 25-34



Flocking

* We will model three virtual forces
describing the local interaction between
particles (in fact we will calculate

lire 4,
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Local neighborhood

* For position b of 3 given particle we test
whether positions X; of other particles are

smaller than d: 4‘&/2
{ E&_‘ i
. b _ fi < d I"...\ \\ ;/._.._,._-' A




Cohesion

Compute the vector pointing to the center of
mass of neighboring particle positions

N

— Z? fl B) l. | ei". |
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Separation

Pseudocode:

v, zero vector

for all neighboring particles

~1f|b — %,

o t]]é’n 732:732—

return v,

< min

(b

— Xi)

Separatio
n



Alignment

* Calculate the average velocity of neighboring
particles x,,, and determine new velocity U3

=2 ] }s b,

)\
hhk
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Weighted average of virtual forces

* Velocity:

e b.=b,+wW. U +wWoU, + Wal
v v 1Y1 2V2 3V3



Weighted average of virtual forces

Velocity:

bv = bv —+ W1Vq —+ W- V> ~+ W3 Vs

Position:
b=>b+b,



Exert

* Implement boids
algorithm and
represent particles
geomtrically as
spheres

Bicep




Exer:

e Substitute spheres
with the fish
model. How can
we extend our
particle system to
have a better
flocking
simulation?

Bicep
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