
CPG 7 

Dr Wojciech Palubicki 



Single Particle 

glm::vec3 Pos 

 

glm::vec3 Vel 

 

glm::vec3 Force/m 

 

 

 



Rigid Bodies 

glm::vec3 Pos 

glm::quat Rot 

 

glm::vec3 Vel 

glm::vec3 AngVel 

 

glm::vec3 Force/m 

glm::vec3 Torque/I 

 

 



Rigid Bodies 

glm::vec3 Pos 

glm::quat Rot 

 

glm::vec3 Vel 

glm::vec3 AngVel 

 

glm::vec3 Force/m 

glm::vec3 Torque/I 

 

 



Rigid Bodies 

glm::vec3 Pos 

glm::quat Rot 

 

glm::vec3 Vel 

glm::vec3 AngVel 

 

glm::vec3 Force/m 

glm::vec3 Torque/I 

 

 

glm::vec3 Pos 

glm::quat Rot 

 

glm::vec3 LinMom 

glm::vec3 AngMom 

 

glm::vec3 Force 

glm::vec3 Torque 

 

 



Differential equation 

• Equations of the form 𝑥  =  𝑓 (𝑥, 𝑡) 

• x is the position state vector of the system 

• f is the function that computes the derivative 
of x with respect to time 



For rigid bodies 

• x f (x) 

• position velocity 

• velocity/linear momentum acceleration/force 

• rotation angular velocity (! ? R) 

• angular velocity/angular momentum angular 
acceleration/torque 



Numerical solutions 

• We cannot just compute the state at time t 

• There is no closed form for it, unless the 
problem is really simple 

• We look for an approximate solution 



Field of derivatives 

• We know how to compute f 

• This means that we can compute the field of 
slopes of x 



Slope field 

 



Position state vector of rigid bodies 

 

 

 

 

 

 

• Size of the vector: (3+4+3+3)N = 13N 



Velocity state vector of rigid bodies 

 



Follow the slope 

• Start at x0 

• Follow the slope 

• Discrete steps 



Euler's method 

• Big, discrete steps along the slope:  𝑥(𝑡 +
 ℎ)  =  𝑥(𝑡)  +  ℎ𝑥  (𝑡) 

• Works correctly and may be acceptable in 
some cases 

• Simple to code and fast to run 

• Otherwise it requires a very small time-step to 
compensate 



Euler's method 

 



Euler's method 

• Why may Euler's method not work? 

• Euler's method is inaccurate - it may jump 
from one trajectory to another 

• Not stable - it may increase the energy of the 
state where it should decrease it 



Euler's method 

 



Taylor series 

• Any function can be expressed as the infinite sum of its 
derivatives 
 

𝑥 𝑡 +  ℎ

=  𝑥 𝑡 +  ℎ𝑥 𝑡 +
ℎ2

2
𝑥 𝑡 + ⋯+

ℎn

𝑛!

dn

𝑑𝑡𝑛
𝑥 𝑡 +⋯ 

 
• We can truncate this summation to approximate the 

original function 
• All differential equations solvers are based on this 

technique 



Taylor series 

• Any function can be expressed as the infinite sum of its 
derivatives 
 

𝑥 𝑡 +  ℎ

=  𝑥 𝑡 +  ℎ𝑥 𝑡 +
ℎ2

2
𝑥 𝑡 + ⋯+

ℎn

𝑛!

dn

𝑑𝑡𝑛
𝑥 𝑡 +⋯ 

 
• We can truncate this summation to approximate the 

original function 
• Most differential equations solvers are based on this 

technique 



Deriving Euler's method 

• 𝑥 𝑡 +  ℎ =  𝑥 𝑡 +  ℎ𝑥 𝑡 +
ℎ2

2
𝑥 𝑡 + ⋯+

ℎn

𝑛!

dn

𝑑𝑡𝑛
𝑥 𝑡 + ⋯ 

• 𝑥 𝑡 +  ℎ  ~ 𝑥 𝑡 +  ℎ𝑥 𝑡  

 



Deriving Euler's method 

• 𝑥 𝑡 +  ℎ =  𝑥 𝑡 +  ℎ𝑥 𝑡 +
ℎ2

2
𝑥 𝑡 + ⋯+

ℎn

𝑛!

dn

𝑑𝑡𝑛
𝑥 𝑡 + ⋯ 

• 𝑥 𝑡 +  ℎ  ~ 𝑥 𝑡 +  ℎ𝑥 𝑡  

 



Deriving the midpoint method 

• 𝑥 𝑡 +  ℎ  ~ 𝑥 𝑡 +  ℎ𝑥 𝑡 +
ℎ2

2
𝑥 𝑡  

• We must now compute 𝑥 𝑡  

• 𝑥 𝑡 =
𝑑

𝑑𝑡
𝑥 =

𝑑

𝑑𝑡
𝑓 𝑥 𝑡 = 𝑓′ 𝑥 𝑡 𝑥 =

𝑓′ 𝑥 𝑡 𝑓(𝑥(𝑡)) 



Deriving the midpoint method 

• 𝑥 𝑡 +  ℎ  ~ 𝑥 𝑡 +  ℎ𝑥 𝑡 +
ℎ2

2
𝑥 𝑡  

• We must now compute 𝑥 𝑡  

• 𝑥 𝑡 =
𝑑

𝑑𝑡
𝑥 =

𝑑

𝑑𝑡
𝑓 𝑥 𝑡 = 𝑓′ 𝑥 𝑡 𝑥 =

𝑓′ 𝑥 𝑡 𝑓(𝑥(𝑡)) 



Deriving the midpoint method 

• 𝑥 𝑡 = 𝑓′ 𝑥 𝑡 𝑓(𝑥(𝑡)) 

• We now approximate 𝑓 with Euler's method 

• 𝑓 (𝑥0 + ∆𝑥)  =  𝑓 (𝑥0)  + ∆𝑥𝑓′0(𝑥0) 



Deriving the midpoint method 

• 𝑥 𝑡 = 𝑓′ 𝑥 𝑡 𝑓(𝑥(𝑡)) 

• We now approximate 𝑓 with Euler's method 

• 𝑓 (𝑥0 + ∆𝑥)  =  𝑓 (𝑥0)  + ∆𝑥𝑓′0(𝑥0) 



Deriving the midpoint method 

• 𝑓 (𝑥0 + ∆𝑥)  =  𝑓 (𝑥0)  + ∆𝑥𝑓′0(𝑥0) 

• We (arbitrarily) choose ∆𝑥 = 
ℎ

2
 𝑓 (𝑥0)  

• Substitute the approximation of 𝑓 

• 𝑓 (𝑥0 +
ℎ

2
 𝑓 (𝑥0))  =  𝑓 (𝑥0)  +

ℎ

2
 𝑓 (𝑥0)𝑓′0(𝑥0) 

• We multiply both sides by h: 

• ℎ(𝑓 (𝑥0 +
ℎ

2
 𝑓 𝑥0 ) − 𝑓 (𝑥0))  =

ℎ2

2
 𝑓 (𝑥0)𝑓′0(𝑥0) =

ℎ2

2
𝑥  

 



Deriving the midpoint method 

• 𝑓 (𝑥0 + ∆𝑥)  =  𝑓 (𝑥0)  + ∆𝑥𝑓′0(𝑥0) 

• We (arbitrarily) choose ∆𝑥 = 
ℎ

2
 𝑓 (𝑥0)  

• Substitute the approximation of 𝑓 

• 𝑓 (𝑥0 +
ℎ

2
 𝑓 (𝑥0))  =  𝑓 (𝑥0)  +

ℎ

2
 𝑓 (𝑥0)𝑓′0(𝑥0) 

• We multiply both sides by h: 

• ℎ(𝑓 (𝑥0 +
ℎ

2
 𝑓 𝑥0 ) − 𝑓 (𝑥0))  =

ℎ2

2
 𝑓 (𝑥0)𝑓′0(𝑥0) =

ℎ2

2
𝑥  

 



Deriving the midpoint method 

• 𝑓 (𝑥0 + ∆𝑥)  =  𝑓 (𝑥0)  + ∆𝑥𝑓′0(𝑥0) 

• We (arbitrarily) choose ∆𝑥 = 
ℎ

2
 𝑓 (𝑥0)  

• Substitute the approximation of 𝑓 

• 𝑓 (𝑥0 +
ℎ

2
 𝑓 (𝑥0))  =  𝑓 (𝑥0)  +

ℎ

2
 𝑓 (𝑥0)𝑓′0(𝑥0) 

• We multiply both sides by h: 

• ℎ(𝑓 (𝑥0 +
ℎ

2
 𝑓 𝑥0 ) − 𝑓 (𝑥0))  =

ℎ2

2
 𝑓 (𝑥0)𝑓′0(𝑥0) =

ℎ2

2
𝑥  

 



Deriving the midpoint method 

• 𝑥 𝑡 +  ℎ  ~ 𝑥 𝑡 +  ℎ𝑥 𝑡 +
ℎ2

2
𝑥 𝑡  

• 𝑥 𝑡 = 𝑓′ 𝑥 𝑡 𝑓(𝑥(𝑡)) 

• ℎ 𝑓 𝑥0 +
ℎ

2
 𝑓 𝑥0 − 𝑓 𝑥0 =

ℎ2

2
𝑓′ 𝑥0 𝑓 𝑥0 =

ℎ2

2
𝑥  

• 𝑥 𝑡 +  ℎ  ~ 𝑥 𝑡 +  ℎ𝑥 𝑡 + ℎ(𝑓 (𝑥0 +
ℎ

2
 𝑓 𝑥0 ) − 𝑓 (𝑥0)) 

 

 

 



Deriving the midpoint method 

 

• 𝑥 𝑡 +  ℎ  ~ 𝑥 𝑡 +  ℎ𝑥 𝑡 + ℎ(𝑓 (𝑥0 +
ℎ

2
 𝑓 𝑥0 ) − 𝑓 (𝑥0)) 

 

• We sample the derivative at the midpoint of 
the step, hence the name 



 



Midpoint method 

• 𝑥 𝑡 +  ℎ  ~ 𝑥 𝑡 +  ℎ𝑥 𝑡 + ℎ(𝑓 (𝑥0 +
ℎ

2
 𝑓 𝑥0 ) − 𝑓 (𝑥0)) 

 

• We compute 𝑓 twice; in general, the higher 
number of evaluations of 𝑓 in advanced 
methods is more than offset by the far smaller 
time step needed 



Runge-Kutta: RK4 

• The most widely used numerical method in 
game physics is RK4 

 

• 𝑘1 =  ℎ𝑓 𝑥0 , 𝑘2 =  ℎ𝑓 𝑥0 +
𝑘
1

2
, 𝑘3 =

 ℎ𝑓 𝑥0 +
𝑘
2

2
, 𝑘4 =  ℎ𝑓 𝑥0 +

𝑘
3

2
 

 

𝑥 𝑡 + ℎ = 𝑥0+
1

6
𝑘1+

1

3
𝑘2+

1

3
𝑘3+

1

6
𝑘4 

 



RK4 

 



How many points? 

• Why not use RK5, RK6, or even more? 

• Is it not more precise after all? 

• We can approximate the higher order derivatives with 
the first derivative only so much 

• After a while we are not inserting any new information 

• Very high order methods would only work if we could 
reliably compute third or fourth order derivatives 

• Otherwise we insert oscillations and new errors in the 
system 



How many points? 

• Why not use RK5, RK6, or even more? 

• Is it not more precise after all? 

• By approximating higher order derivatives 
with first order derivatives after a while we 
are not inserting any new information 





Integration and rotation 

• We integrate 𝐿 from 𝜏 

• We integrate 𝜔 from 𝐿 and 𝐼−1 

• We integrate 𝑅 from 𝜔 



Problem 

• Recomputing I from every particle of the body 
and at every update step is slow 



Caching moment of inertia I 

• Compute I in body space Ibody and then transform 
to world space as required 
– I(t) varies in world space, but Ibody is constant in body 

space   for the entire simulation 

• Transform 𝜔(𝑡) to body space, apply inertia 
tensor in body space and transform back to world 
space 

 
𝐿(𝑡) = 𝐼(𝑡)𝜔(𝑡) =  𝑅(𝑡) 𝐼𝑏𝑜𝑑𝑦 𝑅𝑇(𝑡) 𝜔(𝑡) 

𝐼−1(𝑡) =  𝑅(𝑡)𝐼𝑏𝑜𝑑𝑦
−1 𝑅𝑇(𝑡) 

 



Caching moment of inertia I 

• Compute I in body space Ibody and then transform 
to world space as required 
– I(t) varies in world space, but Ibody is constant in body 

space   for the entire simulation 

• Transform 𝜔(𝑡) to body space, apply inertia 
tensor in body space and transform back to world 
space 

 
𝐿(𝑡) = 𝐼(𝑡)𝜔(𝑡) =  𝑅(𝑡) 𝐼𝑏𝑜𝑑𝑦 𝑅𝑇(𝑡) 𝜔(𝑡) 

𝐼−1(𝑡) =  𝑅(𝑡)𝐼𝑏𝑜𝑑𝑦
−1 𝑅𝑇(𝑡) 

 
Body 
Space 

World Space 

R Matrix 



Caching moment of inertia I 

• Compute I in body space Ibody and then transform 
to world space as required 
– I(t) varies in world space, but Ibody is constant in body 

space   for the entire simulation 

• Transform 𝜔(𝑡) to body space, apply inertia 
tensor in body space and transform back to world 
space 

 
𝐿(𝑡) = 𝐼(𝑡)𝜔(𝑡) =  𝑅(𝑡) 𝐼𝑏𝑜𝑑𝑦 𝑅𝑇(𝑡) 𝜔(𝑡) 

𝐼−1(𝑡) =  𝑅(𝑡)𝐼𝑏𝑜𝑑𝑦
−1 𝑅𝑇(𝑡) 

 



Caching moment of inertia I 

• Compute I in body space Ibody and then transform 
to world space as required 
– I(t) varies in world space, but Ibody is constant in body 

space   for the entire simulation 

• Transform 𝜔(𝑡) to body space, apply inertia 
tensor in body space and transform back to world 
space 

 
𝐿(𝑡) = 𝐼(𝑡)𝜔(𝑡) =  𝑅(𝑡) 𝐼𝑏𝑜𝑑𝑦 𝑅𝑇(𝑡) 𝜔(𝑡) 

𝐼−1(𝑡) =  𝑅(𝑡)𝐼𝑏𝑜𝑑𝑦
−1 𝑅𝑇(𝑡) 

 



Caching moment of inertia I 

• Compute I in body space Ibody and then transform 
to world space as required 
– I(t) varies in world space, but Ibody is constant in body 

space   for the entire simulation 

• Transform 𝜔(𝑡) to body space, apply inertia 
tensor in body space and transform back to world 
space 

 
𝐿(𝑡) = 𝐼(𝑡)𝜔(𝑡) =  𝑅(𝑡) 𝐼𝑏𝑜𝑑𝑦 𝑅𝑇(𝑡) 𝜔(𝑡) 

𝐼−1(𝑡) =  𝑅(𝑡)𝐼𝑏𝑜𝑑𝑦
−1 𝑅𝑇(𝑡) 

 



 



Inertia tensor - approximation with 
points 

Source code and description of algorithm here (Mirtich 1996) 

https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf


Simulation overview 

 



Simulation overview 

 

Differential 
equation 

solver 



Example: Euler  

 



Projects Half-Term (20% of total mark) 

• Tuesday, 18.12.2018, 12.00 D-1 
• Create a pretty, interactive water scene 
• Use the following techniques: 

– Draw models using vertex array objects 
– Use environment, normal and shadow mapping 
– Microfacet BRDF, model different materials 
– Particle system 

• Present your application AND one article from 
GPU Gems of your choice, 3 + 12 minutes 
(powerpoint) 

https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html


Exercise 

• Add an orientation attribute to 
the particle data class 

• Initialize fish with orientations 
• Calculate rotation matrix R with 

parallel transport frame 
method (R = glm:rotate(angle_deg, 
norm_axis)) 

• Convert to quaternion and add 
the derivative of the quaternion 
resulting from fish movement 
to obtain the new orientation: q 
= q + ½*quat_cast(R) 

• Fish should be oriented now in 
the direction they are moving 


