CPG 7/

Dr Wojciech Palubicki

Single Particle

glm::vec3 Pos
glm::vec3 Vel

glm::vec3 Force/m

glm
glm

glm
glm

.:vec3 Pos
::quat Rot

::vec3 Vel
::vec3 AngVel

Rigid Bodies

glm:
glm:

Rigid Bodies

:vec3 Pos
:quat Rot

::vec3 Vel
::vec3 AngVel

::vec3 Force/m
::vec3 Torque/|

glm:

glm:
glm:

glm:

Rigid Bodies

:vec3 Pos
::quat Rot

:vec3 Vel
:vec3 AngVel

::vec3 Force/m
:vec3 Torque/|

glm

glm:

glm:
glm:

glm::
glm:

.:vec3 Pos
:quat Rot

:vec3 LinMom
:vec3 AngMom

vec3 Force
:vec3 Torque

Differential equation

* Equations of theformx = f (x,t)
* X is the position state vector of the system

* fisthe function that computes the derivative
of X with respect to time

For rigid bodies

a s F [\
X f(x)
position velocity
velocity/linear momentum acceleration /force
rotation angular velocity (w * R)

angular velocity /angular momentum

angular acceleration /torque

Numerical solutions

* We cannot just compute the state at time t

* There is no closed form for it, unless the
problem is really simple

 We look for an approximate solution

Field of derivatives

* We know how to compute f

* This means that we can compute the field of
slopes of x

Slope field

i

AV

-

The derivative

& | function

X =f(x,t)
forms a vector

o~ |ficld.

Vo

Position state vector of rigid bodies

) — Spatial information

. d q
X(t) = —
(1) | p

— Velocity information

e Size of the vector: (3+4+3+3)N = 13N

Velocity state vector of rigid bodies

(x(t)\ [v\ [HB)

X(t):é q(t) — %UJ t)q(t) — %f_lL t)q(t)
dt | P(t) F(t) F(t)

\ L))\))\)

Follow the slope

* Start at x,
* Follow the slope

* Discrete steps Start Here

T

\£

Follow the vectors... ‘{

Euler's method

Big, discrete steps along the slope: x(t +
h) = x(t) + hx (t)

Works correctly and may be acceptable in
some cases

Simple to code and fast to run

Otherwise it requires a very small time-step to
compensate

Euler's method

* Simplest numerical
solution method

* Discrete time steps

+ Bigger steps, bigger
errors.

Euler's method

 Why may Euler's method not work?

* Euler's method is inaccurate - it may jump
from one trajectory to another

* Not stable - it may increase the energy of the
state where it should decrease it

Euler's method

=N Inaccuracy:
f ﬁ?ﬁi\\ Error turns x(t) from a
f,ﬁ'\\ \\\\ circle into the spiral of
& your choice.
N7
\SZ//l
| Instability: off to
‘I\\l\\\ \\\ \\ /f Nevtenel
\Q N
A/ -
/1
N

Taylor series

Taylor series

* Any function can be expressed as the infinite sum of its
derivatives

x(t + h)
h? h" d"

= x(0) + hi() + %O + -+ -

x(t) + -

* We can truncate this summation to approximate the
original function

* Most differential equations solvers are based on this
technique

Deriving Euler's method

Cx(t + h) = x(®)+ hi(E) + () 4+

" d"
;ﬁX(t) + .-

Deriving Euler's method

Cx(t + h) = x(®)+ hi(E) + () 4+

" d"
;ﬁX(t) + .-

e x(t + h) ~x(t) + hx(t)

Deriving the midpoint method

Cx(t + h) ~x(D) + hi(t) + 25

Deriving the midpoint method

Cx(t + h) ~x(D) + hi(t) + 25

* We must now compute ¥ (t)

o X¥(t) = —x = —f(x(t)) f' (x(t))x =
f' (X(t))f (x ()

Deriving the midpoint method

+ 50 = £ (x())f ()

Deriving the midpoint method

+ 50 = £ (x())f ()

* We now approximate f with Euler's method
* f(xg +Ax) = f(x9) + Axfo(x)

Deriving the midpoint method

* f (g +Ax) = f (%) +Axf (%)
* We (arbitrarily) choose Ax =% f (x0)
* Substitute the approximation of f

 f (x5 (X)) = f (%) +5 f (xo)fo(%o)

Deriving the midpoint method

* f (g +Ax) = f (%) +Axf (%)
* We (arbitrarily) choose Ax =% f (x0)
* Substitute the approximation of f

 f (x5 (X)) = f (%) +5 f (xo)fo(%o)
 We multiply both sides by h:

* h(f (xp +3 f () = f (3) =

=~ f () fo(x0)

Deriving the midpoint method

* f (g +Ax) = f (%) +Axf (%)
* We (arbitrarily) choose Ax =% f (x0)
* Substitute the approximation of f

 f (x5 (X)) = f (%) +5 f (xo)fo(%o)
e We muItipIy both sides by h:

* h(f (o + = f(xo)) f(xo)) =

By f (x)f’ o(xo) =

Deriving the midpoint method

¢ x(t + h) ~x(6) + hi() + L)

» %(t) = f'(x(©)f (x(t))

. h(f (%0 +2 £ () —f(x0)> _

h;zf’ (xo)f (%) = h?zx
* x(t + h) ~x(t) + hx(t) + h(f (x, +
= f () = f (%))

Deriving the midpoint method

* x(t + h) ~x(t) + hx(t) + h(f (x, +
= f () — f (30))

 We sample the derivative at the midpoint of
the step, hence the name

Il‘ Il‘ +h/2 t
n n n+

Midpoint method

e x(t + h) ~x(t) + hx(t) + h(f (x, +
= f (x)) = f ()

* We compute f twice; in general, the higher
number of evaluations of f in advanced
methods is more than offset by the far smaller
time step needed

Runge-Kutta: RK4

* The most widely used numerical method in
game physics is RK4

* ky = hf (xp) by = Bf (xy +2), ks =
hf (xo +2),ky = hf (xp +3)
1 1

1 1
X(t+h) =XO+gk1+§k2+§k3+gk4

How many points?

* Why not use RK5, RK6, or even more?
* |sit not more precise after all?

How many points?

 Why not use RK5, RK6, or even more?
* |s it not more precise after all?

* By approximating higher order derivatives
with first order derivatives after a while we
are not inserting any new information

Integration and rotation

* We integrate L from 1
* We integrate w from L and I}
 We integrate R from w

Problem

 Recomputing | from every particle of the body
and at every update step is slow

Caching moment of inertia |

e Compute |l in body space lbody and then transform
to world space as required

— |(t) varies in world space, but Ibody is constant in body
space for the entire simulation

Caching moment of inertia |

e Compute |l in body space lbody and then transform
to world space as required

— |(t) varies in world space, but Ibody is constant in body

space for the entire simulation
R Matrix |
Body World Space

Space

Caching moment of inertia |

e Compute |l in body space lbody and then transform
to world space as required

— |(t) varies in world space, but Ibody is constant in body
space for the entire simulation

* Transform w(t) to body space, apply inertia
tensor in body space and transform back to world

space

L(t) = I(H)w(t) =

Caching moment of inertia |

e Compute |l in body space lbody and then transform
to world space as required

— |(t) varies in world space, but Ibody is constant in body
space for the entire simulation

* Transform w(t) to body space, apply inertia
tensor in body space and transform back to world

space

L(t) =1(t)w(t) = R(t) Irody RT(t) w(t)

Caching moment of inertia |

e Compute |l in body space lbody and then transform
to world space as required

— |(t) varies in world space, but Ibody is constant in body
space for the entire simulation

* Transform w(t) to body space, apply inertia
tensor in body space and transform back to world

space

L(t) =1(t)w(t) = R(t) Irody RT(t) w(t)
I7H(E) = R(O)poqy " RT(E)

Common Moments of Inertia

Rod about
Solid cylinder or Hoop about Solid center
disc, syrnmetry axis symmetry axis sphere /
2 R® I=MR MRz ML2
—!MR })]
—ML [=- MRZ I=§MR2 I=}ML2

Solid cylinder, Hoop about Thin spherical Rod about
central diameter diameter shell end

Inertia tensor - approximation with
points

Source code and description of algorithm here (Mirtich 1996)

https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf
https://pdfs.semanticscholar.org/08b2/ce791f24002743ba45ef1b2d35a4accb4a7c.pdf

Simulation overview

— Spatial information

— \/elocity information

Simulation overview

l
Pre-compute: T Y rxf
M Z m; F Z f;
Ihody . . Differential
(X, X) «step(X, X, F,7)f—— .
et equation
Initialize R « quat2mat(q) solver
‘ 1 T
X}VjR,ij’X I — RIbodyR
L~ Ilw

Exam| —— ST
F — fo,;
Pre-compute: D LA
M= Z T L <L+ Atr
Ibody weI1L
P
Initialize XX+ Al
x,v,R,w,X,X q<—q-|-At%wq
e RIbOdyRT R « quat2mat(q)
L Iw I"! < RlpogyR!

Projects Half-Term (20% of total mark)

Tuesday, 18.12.2018, 12.00 D-1
Create a pretty, interactive water scene

Use the following techniques:

— Draw models using vertex array objects

— Use environment, normal and shadow mapping

— Microfacet BRDF, model different materials

— Particle system

Present your application AND one article from

GPU Gems of your choice, 3 + 12 minutes
(powerpoint)

https://developer.nvidia.com/gpugems/GPUGems/gpugems_pref01.html

Exerc

Add an orientation attribute to
the particle data class

Initialize fish with orientations

Calculate rotation matrix R with
parallel transport frame
method (R = gIm:rotate(angle_deg,
norm_axis))

Convert to quaternion and add
the derivative of the quaternion
resulting from fish movement
to obtain the new orientation: g
= g + 2*quat_cast(R)

Fish should be oriented now in
the direction they are moving

Bicep

