
CGP 8
WP

Collision Detection

User input Collisions

Find new states

Sphere

• Sphere collision check:
𝑑 < 𝑟1 + 𝑟2

• Collision response: conservation of momentum

Sphere

• Sphere collision check:
𝑑 < 𝑟1 + 𝑟2

• Collision response: conservation of momentum

Distance: Point to Point

Distance: Point to Point

Distance: Point to Edge

Distance: Point to Face

Distance: Point to Face

Distance Tests

Naïve Collision Detection

Naïve Collision Detection

Compare ALL Pairs

All Pair Inefficiency

Pair Locality

Naïve Collision Detection

Compare ALL Pairs

Naïve Collision Detection

Pair Processing

Compare ALL Pairs

Pair Processing Inefficiency

• Even for just two pairs there are significant problems:

Naïve Collision Detection

Pair Processing

Compare ALL Pairs

Fixed Time-Step Problem

Discrete time step

Fixed Time-Step Problem

• Position and orientation of bodies are updated at each time-step
• Interactions are only handled at discrete time-steps

• Simulation time is incremented by fixed amount ∆𝑡
• Large ∆𝑡 reduces accuracy of collision detection

• Smaller ∆𝑡 reduces efficiency of simulation

Continuous collision detection

Nvidia GPU Gems 3 Ch. 33

Two-Phase Collision Detection

• Addressing the issues:
• Broad Phase: use coarse bounding

volumes to represent objects and cull
pairs who overlap. “Sweep and Prune”
exploits between–frame coherence to
achieve almost O(n) complexity

• Narrow Phase: use polygon model to
determine actual points of contact, but
cull areas of objects that are not in
contact

Basic Simulation Loop

Broad-Phase Collision Detection

• Quickly prune away pairs of objects from more detailed collision
processing

• Faster than O(n2) performance achieved by exploiting features in
animation data:
• Locality

• Coherency

• Typical Instruments:
• Bounding volumes

• Spatial subdivision

• Sweep and Prune

Bounding Volumes

Axis-Aligned Bounding Box (AABB)

• Box with edges that align to the axes of coordinate
system (position limits in each dimension)

• Find minimum and maximum coordinate values in x,
y and z directions

• Pros
• Computationally efficient

• Cons
• Unsatisfying fill efficiency

• Not invariant to rotation (requires dynamic update)

Bounding Sphere

• The smallest sphere that encloses object (center,
radius)

• Find minimum enclosing sphere
• Take center of AABB; furthest vertex is radius
• Ritter’s or Welzl’s algorithm

• Pros
• Invariant to rotation
• Computationally efficient

• Cons
• Long or flat objects are not well fit

Oriented Bounding Box (OBB)

• Optimally fit box around object (position, orientation,
extents)

• Create manually or used PCA based fitting

• Pros
• Invariant to rotation

• Tighter bounds than AABB and sphere

• Cons
• Computationally more expensive to generate

• Harder to implement

Discrete Oriented Polytopes (k-DOP)

• Generalization of AABBs defined by k
hyperplanes with normal in discrete
directions (𝑛𝑘: 𝑛𝑘, 𝑗 𝜖 {0, ±1})

• K-DOP is defined by k/2 pairs of min, max
values in 𝑘 directions.

• Two k-DOPs do not overlap, if the intervals
in one direction do not overlap.

Different k-DOPs

k-DOP

Unity k-DOPs

Better approximation, higher build and update costs

Smaller computational costs for overlap tests

Broad Phase Objects

Spatial Subdivision

• E.g. Grid method
• Divide scene into uniform cells

• Each object keeps a record of grid cells that it
overlaps with

• Only perform pair-wise collision tests with
objects in own or neighboring cells

• Define topology of objects

Uniform Grid

• Define a uniform grid with cell
size s

• For each point p = (x,y,z) we
can find corresponding cell c =
(i,j,k) = T(p)

• Tiling function T(p) = ([x/s],
[y/s], [z/s])

s

s

(0,0)

Uniform Grid

• Define a uniform grid with cell
size s

• For each point p = (x,y,z) we
can find corresponding cell c =
(i,j,k) = T(p)

• Tiling function T(p) = (x/s ,
y/s , z/s)

(x,y)

(i,j)

s

s

(0,0)

Uniform Grid

• Insert object (ID=1) into grid and store it's ID into overlapping cells
based on its AABB

1

1

s

s

1

1

1

x

y

Uniform Grid

2 2 2

 2

 2

 2

1

1

s

s

1

1

1

x

y

• Insert object (ID=1) into grid and store it's ID into overlapping cells
based on its AABB

• Insert object (ID=2) into grid …

2

1;2

Uniform Grid

3 3 2 2 2

3 3 2

5 4;5 4

 2

 2

5 4;5 4

1

1;4

s

s

1

1

1

x

y

• Insert all objects into grid and store IDs into cells
• Orange colored cells contain several IDs - define colliding pairs

• Colliding pairs: (1-2),(1-4),(4-5)

2

1;2

3

4
5

Uniform Grid

3 3 2 2 2

3 3 2

5 4;5 4

 2

 2

5 4;5 4

1

1;4

s

s

1

1

1

x

y

• Insert all objects into grid and store IDs into cells
• Orange colored cells contain several IDs - define colliding pairs

• Colliding pairs: (1-2),(1-4),(4-5)

2

1;2

3

4
5

Uniform Grid – Add Box

• To add a new object “A” into grid

• Obtain AABB(A) = (Ax-, Ay-, Az-, Ax+ , Ay+ , Az+) of “A”

• Calculate Cell(A) = (Ai-, Aj-, Ak-, Ai+, Aj+, Ak+)

• For each cell within (Ai-, Aj-, Ak-) and (Ai+, Aj+, Ak+)
• For each ID stored in the cell create pair (IDx , ID)

• Add ID of object to the list of IDs (check duplicates)

Uniform Grid – Remove Box

• To remove an existing object from grid

• Obtain AABB(A) = (Ax-, Ay-, Az-, Ax+ , Ay+ , Az+) of “A”

• Calculate Cell(A) = (Ai-, Aj-, Ak-, Ai+, Aj+, Ak+)

• For each cell within (Ai-, Aj-, Ak-) and (Ai+, Aj+, Ak+)
• For each ID stored in the cell remove pair (IDx , ID)

• Remove ID of object to the list of IDs

Uniform Grid – Update Box

• When an object has moved the corresponding cells have to be
updated

• Simple approach: call RemoveBox than AddBox

• Alternatively, find specific cells where we need to add/remove IDs

Uniform Grids - Considerations

• If size is too big in relations to objects:
too many false positives in narrow
phase

• If grid size too small: too much work in
broad phase

Uniform Grids - Considerations

• If size is too big in relations to objects:
too many false positives in narrow
phase

• If grid size too small: too much work in
broad phase

Uniform Grids - Considerations

• If size is too big in relations to objects:
too many false positives in narrow
phase

• If grid size too small: too much work in
broad phase

• In practice: size of cell a little bit larger
than longest edge of largest AABB

Uniform Grid - Summary

• Pros
• Simple algorithm – easy to implement

• Fast in special cases – same-size dynamic objects

• Cons
• Finding optimal grid size → problem with large vs small dynamic objects

• Large 3D grid → large amount of memory

• Slow grid update for large objects

Hierarchical Uniform Grid

• Suppose 4 uniform grids with 2k resolutions
• Grid-0: cell size s0 = 1/20 = 1.000

• Grid-1: cell size s1 = 1/21 = 0.500

• Grid-2: cell size s2 = 1/22 = 0.250

• Grid-3: cell size s3 = 1/23 = 0.125

𝑠0

𝑠3

Hierarchical Uniform Grid

• Find resolution of object “C”: Res(C) = 3
• Cell sizes in grids: S = (s0 ,s1 , … ,sk)

• Object box: AABB(C) = (Cx-, Cy-, Cz-, Cx+ , Cy+ , Cz+)

• Object size: Size(C) = max(Cx+- Cx-, Cy+- Cy- , Cz+ - Cz-)

• Object resolution: Res(C) = i <=> a ≤ (Size(C)/si) ≤ b

𝑠0

𝑠3

Typically: a = 0.5 ; b = 1

Hierarchical Uniform Grid

• Insert “C” into grid-3

C C

𝑠0

C

Hierarchical Uniform Grid

• Insert “C” into grid-2

C C

C C

𝑠0

C

Hierarchical Uniform Grid

• Insert “C” into grid-1

C

C C

C C

𝑠0

C

Hierarchical Uniform Grid

• Insert “C” into grid-0

C

C

C C

C C

𝑠0

C

Hierarchical Uniform Grid

• Insert other objects into grids

• Mark IDs to represent the resolution of the object

AB CD DEF F

A AB C D D E

B B C C E

C C E

C A
B D E F

AB CD DEF F

A AB C D D E

B B C C E

C C E

Hierarchical Uniform Grid

• Report all ID pairs that contain multiple IDs but at least one marked ID
• Cell (AB) has one pair A-B

• Cell (DEF) has pairs: D-F and E-F (D-E is not a pair)

C A
B D E F

Hierarchical Uniform Grid - Methods

• Add Box
• Calculate AABB(A), resolution r = Res(A), add box into all grids (0 to r), report

pair (A-Ak) only if grid resolution is Min(Res(A), Res(Ak))

• Remove Box
• Calculate AABB(A), resolution r = Res(A), remove box from all grids (0 to r),

remove pairs (A-Ak)

• Update Box
• Remove Box than Add Box every modified object

Hierarchical Uniform Grid - Summary

• Pros
• Handle small and large dynamic objects
• True linear time broad phase algorithm

• Cons
• More memory (usually 2 times more)
• Must update more grids for each object

• Constant Update → Linear time complexity
• Assuming R = (s+ / s-) = largest / smallest AABB size is constant
• We need k = log(R) grids – constant time
• One object marks O(log R) cells – constant time
• Add/Remove/Update - are constant → time complexity is O(n)

Further Grid Optimization

• Consider the following uniform grid

Further Grid Optimization

• Consider the following uniform grid

• Most of the cells are empty!

Spatial Hashing

• Motivation: large grids are usually very sparse – we need to store data
only for non-empty cells – but we need fast O(1) access based on
(x,y,z)

• Given point p=(x,y,z) laying within cell c=(i,j,k) we define
spatial hashing function as

 hash(i,j,k) = (ip1 xor jp2 xor jp3) mod n

• Where p1 , p2 , p3 are large prime numbers and n is the size of hash
table

Spatial Hashing

• Motivation: large grids are usually very sparse – we need to store data
only for non-empty cells – but we need fast O(1) access based on
(x,y,z)

• Given point p=(x,y,z) laying within cell c=(i,j,k) we define
spatial hashing function as

 hash(i,j,k) = (ip1 xor jp2 xor jp3) mod n

• Where p1 , p2 , p3 are large prime numbers and n is the size of hash
table

0 1 2 3 4 5 6 7 8 9 … NB

(2,0)

(2,1)

(0,2) (1,2) (3,2)

(3,3)

Hash table

Spatial Hashing

• Motivation: large grids are usually very sparse – we need to store data
only for non-empty cells – but we need fast O(1) access based on
(x,y,z)

• Given point p=(x,y,z) laying within cell c=(i,j,k) we define
a spatial hashing function as

 hash(i,j,k) = (ip1 xor jp2 xor kp3) mod n

• Where p1 , p2 , p3 are large prime numbers and n is the size of hash
table

Matthias Teschner, Bruno Heidelberger, Matthias Muller, Danat Pomeranets, Markus
Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects.
8th Workshop on Vision, Modeling, and Visualization (VMV 2003).

Spatial Hashing: Example

Subdivision level Grid cell size

Point  grid address

http://cybertron.cg.tu-berlin.de/eitz/pdf/2007_hsh.pdf
http://cybertron.cg.tu-berlin.de/eitz/pdf/2007_hsh.pdf
http://cybertron.cg.tu-berlin.de/eitz/pdf/2007_hsh.pdf
http://cybertron.cg.tu-berlin.de/eitz/pdf/2007_hsh.pdf
http://cybertron.cg.tu-berlin.de/eitz/pdf/2007_hsh.pdf

Spatial Hashing: Example

Subdivision level Grid cell size

Point  grid address

http://cybertron.cg.tu-berlin.de/eitz/pdf/2007_hsh.pdf
http://cybertron.cg.tu-berlin.de/eitz/pdf/2007_hsh.pdf
http://cybertron.cg.tu-berlin.de/eitz/pdf/2007_hsh.pdf
http://cybertron.cg.tu-berlin.de/eitz/pdf/2007_hsh.pdf
http://cybertron.cg.tu-berlin.de/eitz/pdf/2007_hsh.pdf

Spatial Subdivison Schemes

• Object independent
• Grid

• Object dependent
• Quadtree/Octree

• Kd-tree

• BSP Tree

Spatial Subdivison Schemes

• Object independent
• Grid

• Object dependent
• Quadtree/Octree

• Kd-tree

• BSP Tree

• Object dependent  not suitable
for dynamic scenes

Collisions inside a grid cell?

Sweep-And-Prune (SAP)

• Broad phase collision detection algorithm based on Separating Axes
Theorem.

• Pros
• Suitable for physically based motions

• Exploits spatial and temporal coherence

• Practical average O(n) broad phase algorithm

• Cons
• Uses bad fitting axis-aligned boxes (AABB).

• Not efficient for complex scenes with far away objects

• Too many collisions for high-velocity objects

Separating Plane Theorem

• Two convex objects do NOT penetrate (are separated) if and only if
there exists a (separating) plane which separates them; i.e. objects
are on opposite sides of this plane.

Separating Axis Theorem

• Two convex objects do NOT penetrate (are separated) if and only if
there exists a (separating) axis on which projections of objects are
separated; i.e. Intervals formed by minimal and maximal projections
of objects do not intersect.

SAP – Algorithm Principle

• Consider a scene with 5 objects

x

y

SAP – Algorithm

• Fit each object into its smallest enclosing AABB

• Label boxes as : 1, 2, 3, 4, 5 according to the associated objects.

1

5

x

y
3

4
1

2

SAP – Algorithm

• Project AABBs onto axis X.

• Form list of intervals of minimal and maximal projections on X axis.

1

5

x

y
3

4
1

2

• Project AABBs onto all other axes.

SAP – Algorithm

1

5

x

y

2
3

4
1

• Sort list of projections (limits) on X axis.

• Sort list of projections (limits) on Y axis.

SAP – Algorithm

1

5

x

y

2
3

4
1

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1

y2
y3

.

.

.

SAP – Algorithm

• Run sweep algorithm
• Active intervals = ∅;

• When a min limit value is encountered, add it as intersecting all active
intervals; add it to active intervals

• When max limit value is encountered, remove it from the active intervals

• Intersections must be confirmed across all axes

• Limits are marked as min (green) and max (orange) for associated
AABB.

SAP – Algorithm

1

5

x

y
3

4
1

2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

• Sweep X-limits from first to last while building set of open intervals.

• When adding new min-limit to the set, report potential collision pair
between all boxes from set and the new box.

SAP – Algorithm

1

5

x

y
3

4
1

2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

• Open interval set example:
• (), (1), (1;3), (1), (1;4), (4), (), (5), (), (2), ()

• Reported pairs: (1-3) and (1-4)

SAP – Algorithm

1

5

x

y
3

4
1

2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

• Do the same on Y-Axis:
• Set: (), (4), (4;1), (4;1;5), (4;5), (5), (5;2), (5;2;3), (2;3), (2), ()

• Pairs: (1-4), (1-5), (4-5), (5-2), (5-3), (2-3)

SAP – Algorithm

1

5

x

y

2
3

4
1

SAP – Algorithm

• Find common pairs in all swept directions
• i.e. Real intersecting AABB pairs = SetX ⋀ SetY

• Pairs = SetX ⋀ SetY = { (1-4) }

1

5

x

y
3

4
1

2

SAP - Summary

• To achieve linear time O(n) complexity in average case we must
• Move objects in a coherent fashion (physical motion)

• Use incremental sort of limits. Due to coherence most of limits are sorted.
Insert sort needs only constant swaps.

• Initial sort can be done with quicksort.

SAP – Incremental Update

• Reported pairs: (1-3) and (1-4)

• Suppose object 5 moves right

1

5

x

y
3

4
1

2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

SAP – Incremental Update

• End limit x8 pass over x9 breaking the order

• In this case we report new pair (2-5)

1

x

y
3

4
1

2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

5

SAP – Incremental Update

• Select moving objects and update their limits
• When a start limit moves right and

• passes over start limit – report nothing
• passes over end limit – remove pair

• When a start limit moves left and
• passes over start limit – report nothing
• passes over end limit – add pair

• When an end limit moves right and
• passes over start limit – add pair
• passes over end limit – report nothing

• When an end limit moves left and
• passes over start limit – remove pair
• passes over end limit – report nothing

Pair Management

• Trivial approach is to use
• Matrix to store pair infos - just look at (ID1 , ID2) item

• Simple list to store set of active pairs.

• Can be efficient for < 1000 objects (matrix size n2)

• Use spatial hashing to improve efficiency

Where we are at…

State Update Broad Phase Narrow Phase
Collision

Response

Increase Performance of Assignment

• Spatial Subdivision + Spatial Hashing

