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Course Goals

* Partl
— Introduction into Computer Vision
— Introduction into Deep Learning

— Development of Deep Neural Networks for vision
tasks

e Part?2

— Introduction into Natural Language Processing
— Development of Deep Neural Networks for NLP



Computer Vision




Al and Computer Vision

Artificial Intelligence

Machine Learning

Deep Learnmg A subset of Al that

The subset of machine learning includes abstruse
composed of algorithms that permit statistical techniques
software to train itself to perform tasks, that enable machines
like speech and image recognition, by to improve at tasks
exposing multilayered neural networks to with experience. The
vast amounts of data. category includes
deep learning

Any technique that
enables computers
to mimic human
intelligence, using
logic, if-then rules,
decision trees, and
machine learning
(includingdeep
learning)
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/ Computer Vision

* Object detection

* Object classification

* Scene understanding

* Semantic scene
segmentation

* 3D reconstruction

* Object tracking

* Activity recognition
VOA
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* Human pose estimation
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Computer Vision History

Thinking rabats appear in
Greelk mythelogy

Meurophyanlogists AlexMel achieves
discover that human False stans + overinflated breakihrowgh success at
wision is hierarchacal expeciations leave Al in 1he ILSVALC
the cold
T50 BCE 1956 1959 1960 19T0s 1990 20312 2019

Success with deep neural networks:
paves the way for Al-enabled computer

Computer vigion is viewed 23 wisson ta infiltrate Silican Valley

. a slepping stone to Al +
I regearch beging in esmest

The tesmn “artificial intelligence™ is
coined at the Dartmouth summer
seminar




Large Datasets 1M+
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Detailed Labels

PASCAL

The Image
Classification a
Challenge: :
1,000 object classes
1,431,167 images
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Imagenet Large Scale Visual Recognition Challenge

Classification Results (CLS)

0.3
0.25
o
= 0.2
Ll
-
O 0.15
g
m
& 01
@ : 16.7% | 23.3% |
(1]
O 005 L A
0.036 : 0.023
; 0036 0023

2010 2011 2012 2013 2014 2015 2016 2017



Applications

Defect_class Two

l Defect_class Two
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Defect_class Two

Defect_class Three

Defect_class One
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Grading

Final Exam: written test about lecture
material on computer vision

Multiple Choice Test

End of April

50% of final lecture grade
Requirements: 3+ from labs



Image Classification

> plant

Select correct class from a given set of classes



Image Classification

[[105 112 108 111 104 99 106 99 96 103 112 119 104 97 93 87]
[ 91 98 162 106 104 79 98 103 99 105 123 136 110 105 94 85]
[ 76 85 90 105 128 165 87 96 95 99 115 112 106 103 99 85]
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Computational representation

An image is a tensor of integers
between [0, 255]:

e.g. 1920 x 1080 x 3 (RGB)



Challenges: Different Viewpoints

Pixel values change when the camera moves.




ifferent Backgrounds
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Challenges: Different lllumination




Challenges: Occlusion




Challenges: Variation




Image Classifier

def classify_image(image):

return cléss_label

There is no deterministic, trivial way of selecting
correct classes given just an input image



Rule-based Methods




Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
# Machine learning!
return model

def predict(model, test_images):
# Use model to predict labels
return test_labels




Nearest Neighbor Classifier



First classifier: Nearest Neighbor

def train(images, labels): Memorize all
# Machine Llearning! > data and |abe|S

return model

def predict(model, test_images): Predict the Ia_'be_l
% e sicHel +6 Bradlet Tabele > of the most similar

}
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return test_labels training image




First classifier: Nearest Neighbor

deer bird plane cat car
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Distance Metric to compare images

L1 distance:
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import numpy as np Nearest Neighbor classifier

class NearestNeighbor:
def __init__ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
# lets make sure that the output type matches the input type
Ypred = np.zeros(num _test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred



import numpy as np

class NearestNeighbor:
def __init__ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
# lets make sure that the output type matches the input type
Ypred = np.zeros(num _test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Memorize training data



ISpAFE HRRY. 85 6 Nearest Neighbor classifier
class NearestNeighbor:
def __init_ (sel?):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
it X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]

# lets make sure that the output typ

ne matches the input type
Z

Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

# loop over all test rows

for i in xrange(num test): For each test Image.
# find the nearest training image to the i'th test i : Al
e ) e Find closest train image
# using the L1 distance (sum of absolute value differences) . .
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) Predict label of nearest Image
min_index

np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred



import numpy as np

class NearestNeighbor:
def __init__ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
# lets make sure that the output type matches the input type
Ypred = np.zeros(num _test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Train O(1)
Predict O(N)



Example

1-nearest neighbor

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-
neighbors-plot-classification-py






Points are
training
examples;
colors give
training
labels




Points are
training
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colors give
training
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Background colors
give the category

a test point would
be assigned




Decision boundary
is the boundary
between two
classification regions
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Decision boundary
is the boundary
between two
classification regions

Points are
training
examples;
colors give
training
labels

Decision
boundaries can be
noisy; affected by
outliers

Background colors
give the category
a test point would
be assigned




K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points




K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance
dy(I, I,) Zm 2|

N

L2 (Euclidean) distance
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

d(Ib) =Y |IP - I7| (1, ) = \/Z(If—f«::)z
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Hyperparameters

What is the optimal value of k to use?
What is the optimal distance metric to use?

Hyperparameters are choices about the algorithms
themselves we can't learn.



Hyperparameters

What is the optimal value of k to use?
What is the optimal distance metric to use?

Hyperparameters are choices about the algorithms
themselves we can't learn.

Problem-dependent: try different configuration settings



Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the training data

train




Setting Hyperparameters




Setting Hyperparameters

Idea #2: choose hyperparameters
that work best on test data

train test




Setting Hyperparameters

Idea #2: se hyperparameters
that work best on

test




Setting Hyperparameters

Idea #2: se hyperparameters
that work best on

test
ldea #3: Split data into train, val; choose
hyperparameters on val and evaluate on test
train validation test




Setting Hyperparameters

train

Idea #4. Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning




Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images
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Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images
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Setting Hyperparameters

0.32

Cross-validation on k

20

100

120

Example of
5-fold cross-validation
for the value of k.

Each point: single
outcome.

The line goes

through the mean, bars
indicated standard
deviation

(Seems that k ~= 7 works best
for this data)



kNN Results
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kNN Results
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K-Nearest Neighbors Summary

Image classification starts with a training set of images and labels. It predicts
labels on a test set.

The k-Nearest Neighbors classifier predicts labels based on the k nearest
training examples

Distance metric and k are hyperparameters

Select hyperparameter values using a validation set



K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any(®) function!

5 Training points

2.00
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s —— True function
> 100 e Training points
075 —— Nearest Neighbor function

0.50

0.25

0.00

0.0 0.2 0.4 0.6 0.8 10
X

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.
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K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any(®) function!
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Spatial Coverage Needs Increases with Dimension

Dimensions = 2
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Dimensions = 1
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Training data  Training data
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Theoretical data distribution
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Spatial Coverage Needs Increases with Dimension

Number of possible Number of elementary particles in
32x32 binary images: the visible universe:

23232~ 1()308 ~ 1097



k-Nearest Neighbor Drawbacks

- Distance metrics on pixels are not informative
- Very slow at prediction

(all 3 images have same L2 distance to the one on the left)



Linear Classifier



Linear classifiers : Motivation

kNN produce decision boundaries by calculating them during
prediction.

Can we define a (simple) function during training to define decision
boundaries directly?

X2




Plane Geometry

 Anylinein 2D can be expressed as the set of solutions (x,y) to
the equation ax+by+c=0 (an implicit line)
— ax+by+c > 0 is one side of the line
— ax+by+c < 0 is the other
— ax+by+c =0 is the line itself




Plane Geometry

* In 3D, a (hyper)plane can be expressed as the set of
solutions (x,y,z) to the equation ax+by+cz+d=0
— ax+by+cz+d > 0 is one side of the plane
— ax+by+cz+d < 0 is the other side

— ax+by+cz+d = 0 is the plane itself




Linear Classifier

* Inddimensions,
CotCy X +...+C4* x4 =0
* Abbreviate with dot product:

oy — % Xy —
Co+C:X=Cy+C; " X +...4+C X4 =0

|A| cos6

Dot product



Describe relation between image and label

Image

) f
7k -  Label
e ik
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Describe relation between image and label

Image

ok
D ..'!{ «

Array of 32x32x3 numbers
(3072 numbers total)

- f(x,W)

T
W

parameters
or weights

10 numbers defining
class scores



Parametric Approach: Linear Classifier

| f(x,W) = Wx

mage
— 10 numbers defining
i |8 > 1(x,W) " class scores

= on T

Array of 32x32x3 numbers
(3072 numbers total) W

parameters
or weights



Parametric Approach: Linear Classifier

f(x,W) = Wx

/

Shape: (10,1)



Parametric Approach: Linear Classifier

f(x,W) = Wx

/ \

Shape: (3072,1)
Shape: (10,1)



Parametric Approach: Linear Classifier

Shape: (10,3072)

f(x,W) = Wx

/ \

Shape: (3072,1)
Shape: (10,1)



Parametric Approach: Linear Classifier

vy — * * .
W:l X_Wl,l X1+...'|'W1’3072 X3072 Shape: (10,3072)

f(x,W) = Wx

/ \

Shape: (3072,1)
Shape: (10,1)



Parametric Approach: Linear Classifier
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Parametric Approach: Linear Classifier

vy — * * .
W:l X‘W1,1 X1+...'|'W1’3072 X3072 Shape: (10,3072)

f(x,W) = Wx+b

/ \

o o°° Shape: (3072,1)
%o, % ¢ Shape: (10,1)




Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

56

231

24

Inputimage




Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

56

231

1.1

0.2 [-05| 0.1 | 2.0
56 | 231
2‘; =B 1.5 | 1.3 | 2.1 | 0.0
| 0 02502 |-03
Input image

24

3.2

-1.2

-96.8

437.9

61.95

Cat score

Dog score

Ship score



Linear Classifier Predict Efficiently

- Predict fast by generating scores with matrix-vector
multiplications

scores = W.dot(image) + b




Difficult cases for linear classifiers




Apply Transformations

e f(x, y) = (r(x, y), 8(x, y))

>

) r

Extract features using transformations




Example: Color Histogram

Image A Image B

E
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Example: Histogram of Oriented Gradients (HoG)

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



Example: Histogram of Oriented Gradients (HoG)
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Image Feature Aggregation
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Classification on Image Features

Feature Extraction

sl hals pee

+
Class Label

10 numbers giving
scores for classes




Classification on Image Features

W
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H“”ﬂﬂﬂ”ﬂ”uuﬂuﬂu””u”"%”ﬂ“ﬂnuﬂﬂnﬂ f

+
Class Label

10 numbers giving
scores for classes




Classification on Image Features

Feature Extraction

It it e

+
Class Label
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10 numbers giving
scores for classes



Classification on Image Features

Feature Extraction

It it e

+
Class Label

W?

l

f

10 numbers giving
scores for classes

Measure how well a set of values for W classifies an input



How expressive are the values of W?

— f(x, W)




How expressive are the values of W?

W —_—
data loss
—3 f(xu, W) —> L
X; —
Vi

L: Metric to assess what loss of data classification our model incurs



Loss Function

W —_—
data loss
— f(x, W) —> L
A
X; —
Vi

L: Metric to assess what loss of data classification our model incurs
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