Deep Learning

Wojciech Palubicki

Course Goals

* Partl
— Introduction into Computer Vision
— Introduction into Deep Learning

— Development of Deep Neural Networks for vision
tasks

e Part?2

— Introduction into Natural Language Processing
— Development of Deep Neural Networks for NLP

Computer Vision

Al and Computer Vision

Artificial Intelligence

Machine Learning

Deep Learnmg A subset of Al that

The subset of machine learning includes abstruse
composed of algorithms that permit statistical techniques
software to train itself to perform tasks, that enable machines
like speech and image recognition, by to improve at tasks
exposing multilayered neural networks to with experience. The
vast amounts of data. category includes
deep learning

Any technique that
enables computers
to mimic human
intelligence, using
logic, if-then rules,
decision trees, and
machine learning
(includingdeep
learning)

1111

/ Computer Vision

* Object detection

* Object classification

* Scene understanding

* Semantic scene
segmentation

* 3D reconstruction

* Object tracking

* Activity recognition
VOA

o

* Human pose estimation

~

5

Computer Vision History

Thinking rabats appear in
Greelk mythelogy

Meurophyanlogists AlexMel achieves
discover that human False stans + overinflated breakihrowgh success at
wision is hierarchacal expeciations leave Al in 1he ILSVALC
the cold
T50 BCE 1956 1959 1960 19T0s 1990 20312 2019

Success with deep neural networks:
paves the way for Al-enabled computer

Computer vigion is viewed 23 wisson ta infiltrate Silican Valley

. a slepping stone to Al +
I regearch beging in esmest

The tesmn “artificial intelligence™ is
coined at the Dartmouth summer
seminar

Large Datasets 1M+

V=
N
b2

u'ﬁ' }

. ‘ > ’1- ke
-v_‘ \ % -(. A..,g‘ui |‘_\ ; XY
'5:’ It
\ 1® ol ./il‘ e '

Fe L;F ? bﬁ:"c

Detailed Labels

PASCAL

The Image
Classification a
Challenge: :
1,000 object classes
1,431,167 images

dalmatian

n o%

keeshon

d miniature sch

n

auzer standard schnauzer giant schnauze

r

Imagenet Large Scale Visual Recognition Challenge

Classification Results (CLS)

0.3
0.25
o
= 0.2
Ll
-
O 0.15
g
m
& 01
@ : 16.7% | 23.3% |
(1]
O 005 L A
0.036 : 0.023
; 0036 0023

2010 2011 2012 2013 2014 2015 2016 2017

Applications

Defect_class Two

l Defect_class Two

R

Defect_class Two

Defect_class Three

Defect_class One

Applications

2018.12.28 13:53:17

mask, 0.985

Auslauf Bucht 1/2 K3

Applications

Business
Project Requirements Analytics
Review Approach
Model Tuning

The Al/Machine

T Learning Lifecycle
Chri 5.P I | @Trustinsiahts |
Deployment "mph::pm;::m?;:::t'::si?m::it -

Model
Planning Evaluation
Development
Deployment Model
Selection
Ly _.)'

VIV

g
]

4

i
3
§

3

Prev Image

« §M[]

Data Collect

Box Labels

[Edit Label

person
person

Q6 File List

MUsers/rilynn/src/iabelimg/dem
IUsers/rilynn/src/iabelimg/dem
/Users/rilynn/src/labelimg/dem
Usersirlynn/src/iabelimg/dem
/Users/rlynn/src/iabelimg/dem
Msers/rlynn/src/labelimg/dem
. /Users/rlynn/src/labelimg/dem
/Users/rilynn/src/iabelimg/dem
MUsers/rilynn/src/abelimg/dem
IUsersirflynn/src/iabelimg/dem

2

tree Iree building g

body
A bike

ESS Cir

building
waler grass

bind hike

Bl ding

Grading

Final Exam: written test about lecture
material on computer vision

Multiple Choice Test

End of April

50% of final lecture grade
Requirements: 3+ from labs

Image Classification

> plant

Select correct class from a given set of classes

Image Classification

[[105 112 108 111 104 99 106 99 96 103 112 119 104 97 93 87]
[91 98 162 106 104 79 98 103 99 105 123 136 110 105 94 85]
[76 85 90 105 128 165 87 96 95 99 115 112 106 103 99 85]
[99 81 81 93 120 131 127 100 95 98 102 99 96 93 101 94]
[166 91 61 64 69 91 88 B85 101 107 109 98 75 84 96 95]
[114 108 85 55 55 69 64 54 64 87 112 129 98 74 B84 91]
(133 137 147 103 65 81 80 65 52 54 74 B84 102 93 B85 82]
[128 137 144 140 109 95 86 70 62 65 63 63 60 73 86 101]
[125 133 148 137 119 121 117 94 65 79 8@ 65 54 64 72 98]
[127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 84]
(115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78]
[89 93 9@ 97 108 147 131 118 113 114 113 109 106 95 77 80]
[63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 87]
[62 65 82 89 78 71 80 101 124 126 119 101 107 114 131 119]
[63 65 75 88 B89 71 62 81 120 138 135 105 81 98 110 118]
[87 65 71 87 106 95 69 45 76 130 126 107 92 94 105 112]
[118 97 82 86 117 123 116 66 41 51 95 93 89 95 102 107]
7’ [164 146 112 80 82 120 124 104 76 48 45 66 88 101 102 109]

el [157 170 157 120 93 86 114 132 112 97 69 55 70 82 99 94]

’ (130 128 134 161 139 100 109 118 121 134 114 87 65 53 69 86]

% [128 112 96 117 150 144 120 115 104 107 102 93 87 81 72 79]

gy [123 107 96 86 83 112 153 149 122 109 104 75 80 107 112 99]

T (122 121 102 8@ 82 86 94 117 145 148 153 102 58 78 92 107]
[122 164 148 103 71 56 78 83 93 103 119 139 102 61 63 84]]

Computational representation

An image is a tensor of integers
between [0, 255]:

e.g. 1920 x 1080 x 3 (RGB)

Challenges: Different Viewpoints

Pixel values change when the camera moves.

ifferent Backgrounds

D

Challenges

Challenges: Different lllumination

Challenges: Occlusion

Challenges: Variation

Image Classifier

def classify_image(image):

return cléss_label

There is no deterministic, trivial way of selecting
correct classes given just an input image

Rule-based Methods

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
Machine learning!
return model

def predict(model, test_images):
Use model to predict labels
return test_labels

Nearest Neighbor Classifier

First classifier: Nearest Neighbor

def train(images, labels): Memorize all
Machine Llearning! > data and |abe|S

return model

def predict(model, test_images): Predict the Ia_'be_l
% e sicHel +6 Bradlet Tabele > of the most similar

}

nvus. s L+ M AN L LA S S

return test_labels training image

First classifier: Nearest Neighbor

deer bird plane cat car

- AR

Training data with labels

guery data

Distance Metric

| — R

Distance Metric to compare images

L1 distance:

test image

56

32

10

18

di(I,) =) |7 - I3

P

training image

90

23

128

133

10

20

24

T

24

26

178

200

8

10

89

100

255

220

12

16

178

170

32

233

112

pixel-wise absolute value differences

46

12

14

1

82

13

39

33

12

10

0

30

32

22

108

add
— 456

import numpy as np Nearest Neighbor classifier

class NearestNeighbor:
def __init__ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num _test, dtype = self.ytr.dtype)

loop over all test rows
for i in xrange(num test):
find the nearest training image to the i'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

import numpy as np

class NearestNeighbor:
def __init__ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num _test, dtype = self.ytr.dtype)

loop over all test rows
for i in xrange(num test):
find the nearest training image to the i'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Memorize training data

ISpAFE HRRY. 85 6 Nearest Neighbor classifier
class NearestNeighbor:
def __init_ (sel?):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
it X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]

lets make sure that the output typ

ne matches the input type
Z

Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

loop over all test rows

for i in xrange(num test): For each test Image.
find the nearest training image to the i'th test i : Al
e) e Find closest train image
using the L1 distance (sum of absolute value differences) . .
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) Predict label of nearest Image
min_index

np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

import numpy as np

class NearestNeighbor:
def __init__ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
lets make sure that the output type matches the input type
Ypred = np.zeros(num _test, dtype = self.ytr.dtype)

loop over all test rows
for i in xrange(num test):
find the nearest training image to the i'th test image
using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Train O(1)
Predict O(N)

Example

1-nearest neighbor

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-
neighbors-plot-classification-py

Points are
training
examples;
colors give
training
labels

Points are
training
examples;
colors give
training
labels

Background colors
give the category

a test point would
be assigned

Decision boundary
is the boundary
between two
classification regions

Points are
training
examples;
colors give
training
labels

Background colors
give the category
a test point would
be assigned

Decision boundary
is the boundary
between two
classification regions

Points are
training
examples;
colors give
training
labels

Decision
boundaries can be
noisy; affected by
outliers

Background colors
give the category
a test point would
be assigned

K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance
dy(I, I,) Zm 2|

N

L2 (Euclidean) distance

dlh) = ¥ (1 -5)°

P

N

a
N

/

-
N

/

K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

d(Ib) =Y |IP - I7| (1,) = \/Z(If—f«::)z
5

P

Hyperparameters

What is the optimal value of k to use?
What is the optimal distance metric to use?

Hyperparameters are choices about the algorithms
themselves we can't learn.

Hyperparameters

What is the optimal value of k to use?
What is the optimal distance metric to use?

Hyperparameters are choices about the algorithms
themselves we can't learn.

Problem-dependent: try different configuration settings

Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the training data

train

Setting Hyperparameters

Setting Hyperparameters

Idea #2: choose hyperparameters
that work best on test data

train test

Setting Hyperparameters

Idea #2: se hyperparameters
that work best on

test

Setting Hyperparameters

Idea #2: se hyperparameters
that work best on

test
ldea #3: Split data into train, val; choose
hyperparameters on val and evaluate on test
train validation test

Setting Hyperparameters

train

Idea #4. Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

airplane ' WH_’_‘-‘.

aoomobie [59 0 B 5
wed SY] ST
o DI
N B
o BEREFHEEAN

g EIENE® B
horse gy e N . O 120 I 5 IR O
ship [0] o S e R R
truck iIIﬁlls’iiE

izhevsky, “Learning Multiple Tiny Images”, Technical Report, 2009.

Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

airplane [5 oo B B = 5 9 i

automobﬂe.a!ﬁﬁg
el b | TIST= [E S
deer .m1 EEIII.EE
g WEIREFHER AN
v DENSSDESE
horse “.E...!.!

o a8 BN s
Alex Krizhevsky, “ iny " i s E

y, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009

Test images and nearest neighbors

A~ HNRELEEREE0
ROl b lsd o] | ohe] |
S-SEEEREREER
L>At g rTEFN -
@ ->20EHENENE
-SSP LSRN N
B > i 5 s e s
E-EGENEE SR
B-SNEaREEEER
H-ENNNENEERE

Setting Hyperparameters

0.32

Cross-validation on k

20

100

120

Example of
5-fold cross-validation
for the value of k.

Each point: single
outcome.

The line goes

through the mean, bars
indicated standard
deviation

(Seems that k ~= 7 works best
for this data)

kNN Results

oA~ ST IS A S A
B-FAREREANEER
- HEEEEER S
fritgdrS@FN a
i - 25 s S 0 A Y N
P-EFEPELSANN
“Bd LI LT
E-FGE R B E SR
E-BEEEEERERER
- a¥EN RSN

kNN Results

IR] =il | |4 1¢]€
B-FArEREENEEE
B-BEEEEEREES
godlesg @ rT@F)¥ 4
i - [0 I 0 A N N 8
P-EFEP LSRN
i~ o s o e o
E-EEEDREEEER
E-AREARARREER
H-BEEEEEEERE

K-Nearest Neighbors Summary

Image classification starts with a training set of images and labels. It predicts
labels on a test set.

The k-Nearest Neighbors classifier predicts labels based on the k nearest
training examples

Distance metric and k are hyperparameters

Select hyperparameter values using a validation set

K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any(®) function!

5 Training points

2.00
175

150

s —— True function
> 100 e Training points
075 —— Nearest Neighbor function

0.50

0.25

0.00

0.0 0.2 0.4 0.6 0.8 10
X

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.

K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any(®) function!

10 Training points

2.00
175

150

e —— True function
> 100 e Training points
075 —— Nearest Neighbor function

0.50

0.25

0.00

0.0 0.2 0.4 0.6 0.8 10
X

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.

K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any(®) function!

20 Training points

2.00
175

150

s —— True function
> 100 e Training points
075 —— Nearest Neighbor function

0.50

0.25

0.00

0.0 0.2 0.4 0.6 0.8 10
X

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.

K-Nearest Neighbor: Universal Approximation

As the number of training samples goes to infinity, nearest
neighbor can represent any(®) function!

100 Training points

2.00
175

150

s —— True function
> 100 e Training points
075 —— Nearest Neighbor function

0.50

0.25

0.00

0.0 0.2 0.4 0.6 0.8 10
X

(*) Subject to many technical conditions. Only continuous functions on a compact domain; need to make assumptions about spacing of training points; etc.

Spatial Coverage Needs Increases with Dimension

Dimensions = 2

Points = 42
Dimensions = 1
Points = 4 O O O ©O
o O O O
—-O0—0O0—0 O— O O O ')
0O 0 O O
T \

\

Training data Training data
class A class B

Theoretical data distribution

Dimensions = 3

Points = 43

©O 0 0 O
© 0 0 o /4
0
oooooo
0
ooooOO
0
o o o o 2o
O o
o o o o o
Oo

O 0 0 ©

Spatial Coverage Needs Increases with Dimension

Number of possible Number of elementary particles in
32x32 binary images: the visible universe:

23232~ 1()308 ~ 1097

k-Nearest Neighbor Drawbacks

- Distance metrics on pixels are not informative
- Very slow at prediction

(all 3 images have same L2 distance to the one on the left)

Linear Classifier

Linear classifiers : Motivation

kNN produce decision boundaries by calculating them during
prediction.

Can we define a (simple) function during training to define decision
boundaries directly?

X2

Plane Geometry

 Anylinein 2D can be expressed as the set of solutions (x,y) to
the equation ax+by+c=0 (an implicit line)
— ax+by+c > 0 is one side of the line
— ax+by+c < 0 is the other
— ax+by+c =0 is the line itself

Plane Geometry

* In 3D, a (hyper)plane can be expressed as the set of
solutions (x,y,z) to the equation ax+by+cz+d=0
— ax+by+cz+d > 0 is one side of the plane
— ax+by+cz+d < 0 is the other side

— ax+by+cz+d = 0 is the plane itself

Linear Classifier

* Inddimensions,
CotCy X +...+C4* x4 =0
* Abbreviate with dot product:

oy — % Xy —
Co+C:X=Cy+C; " X +...4+C X4 =0

|A| cos6

Dot product

Describe relation between image and label

Image

) f
7k - Label
e ik

- ﬁ A :

ko

Describe relation between image and label

Image

ok
D ..'!{ «

Array of 32x32x3 numbers
(3072 numbers total)

- f(x,W)

T
W

parameters
or weights

10 numbers defining
class scores

Parametric Approach: Linear Classifier

| f(x,W) = Wx

mage
— 10 numbers defining
i |8 > 1(x,W) " class scores

= on T

Array of 32x32x3 numbers
(3072 numbers total) W

parameters
or weights

Parametric Approach: Linear Classifier

f(x,W) = Wx

/

Shape: (10,1)

Parametric Approach: Linear Classifier

f(x,W) = Wx

/ \

Shape: (3072,1)
Shape: (10,1)

Parametric Approach: Linear Classifier

Shape: (10,3072)

f(x,W) = Wx

/ \

Shape: (3072,1)
Shape: (10,1)

Parametric Approach: Linear Classifier

vy — * * .
W:l X_Wl,l X1+...'|'W1’3072 X3072 Shape: (10,3072)

f(x,W) = Wx

/ \

Shape: (3072,1)
Shape: (10,1)

Parametric Approach: Linear Classifier

vy — * * .
W:l X‘W1,1 X1+...'|'W1’3072 X3072 Shape: (10,3072)

f(x,W) = Wx

/ \

o o°° Shape: (3072,1)
%o, % ¢ Shape: (10,1)

Parametric Approach: Linear Classifier

vy — * * .
W:l X‘W1,1 X1+...'|'W1’3072 X3072 Shape: (10,3072)

f(x,W) = Wx+b

/ \

o o°° Shape: (3072,1)
%o, % ¢ Shape: (10,1)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

56

231

24

Inputimage

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

56

231

1.1

0.2 [-05| 0.1 | 2.0
56 | 231
2‘; =B 1.5 | 1.3 | 2.1 | 0.0
| 0 02502 |-03
Input image

24

3.2

-1.2

-96.8

437.9

61.95

Cat score

Dog score

Ship score

Linear Classifier Predict Efficiently

- Predict fast by generating scores with matrix-vector
multiplications

scores = W.dot(image) + b

Difficult cases for linear classifiers

Apply Transformations

e f(x, y) = (r(x, y), 8(x, y))

>

) r

Extract features using transformations

Example: Color Histogram

Image A Image B

E

0.25} 0.25}
0.20} 0.20}
.Raw 015! 015!
Histogram .| a5a]
0.05} | 0.05}
o.oo-L A 0.00"
0.25} 0.25}
0.20} 0.20}
Smoothed .| aaal

Histogram
0.10} ! 0.10}
0.05} 0.05}
0.00 S 0.00

Example: Histogram of Oriented Gradients (HoG)

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Example: Histogram of Oriented Gradients (HoG)

-

L3

5
~ T
\‘l

\‘-T"--“

- - —

LAL* Ly N
[AR

¥

"/1‘.‘-',(

R

H.ii"-_i-..r,

Image gradients

=k [¥

K|k

descriptor

Image Feature Aggregation

o Jlda
’ I HH HHUHHHH — [t e

(xw U

x HH O I
L]

£ L

Classification on Image Features

Feature Extraction

sl hals pee

+
Class Label

10 numbers giving
scores for classes

Classification on Image Features

W
Feature Extraction l
H“”ﬂﬂﬂ”ﬂ”uuﬂuﬂu””u”"%”ﬂ“ﬂnuﬂﬂnﬂ f

+
Class Label

10 numbers giving
scores for classes

Classification on Image Features

Feature Extraction

It it e

+
Class Label

W?

l

f

10 numbers giving
scores for classes

Classification on Image Features

Feature Extraction

It it e

+
Class Label

W?

l

f

10 numbers giving
scores for classes

Measure how well a set of values for W classifies an input

How expressive are the values of W?

— f(x, W)

How expressive are the values of W?

W —_—
data loss
—3 f(xu, W) —> L
X; —
Vi

L: Metric to assess what loss of data classification our model incurs

Loss Function

W —_—
data loss
— f(x, W) —> L
A
X; —
Vi

L: Metric to assess what loss of data classification our model incurs

	Slide 1: Deep Learning
	Slide 2: Course Goals
	Slide 3: Computer Vision
	Slide 4: AI and Computer Vision
	Slide 5: Computer Vision History
	Slide 6: Large Datasets 1M+
	Slide 7: Detailed Labels
	Slide 8: Imagenet Large Scale Visual Recognition Challenge
	Slide 9: Applications
	Slide 10: Applications
	Slide 11: Applications
	Slide 12
	Slide 13: Data Collection
	Slide 14: Grading
	Slide 15: Image Classification
	Slide 16: Image Classification
	Slide 17: Challenges: Different Viewpoints
	Slide 18: Challenges: Different Backgrounds
	Slide 19: Challenges: Different Illumination
	Slide 20: Challenges: Occlusion
	Slide 21: Challenges: Variation
	Slide 22: Image Classifier
	Slide 23: Rule-based Methods
	Slide 24: Machine Learning: Data-Driven Approach
	Slide 25: Nearest Neighbor Classifier
	Slide 26: First classifier: Nearest Neighbor
	Slide 27: First classifier: Nearest Neighbor
	Slide 28: Distance Metric to compare images
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Example
	Slide 34: Example
	Slide 35: Example
	Slide 36: Example
	Slide 37: Example
	Slide 38: Example
	Slide 39: K-Nearest Neighbors
	Slide 40
	Slide 41: K-Nearest Neighbors: Distance Metric
	Slide 42: Hyperparameters
	Slide 43: Hyperparameters
	Slide 44: Setting Hyperparameters
	Slide 45: Setting Hyperparameters
	Slide 46: Setting Hyperparameters
	Slide 47: Setting Hyperparameters
	Slide 48: Setting Hyperparameters
	Slide 49: Setting Hyperparameters
	Slide 50: Example Dataset: CIFAR10
	Slide 51: Example Dataset: CIFAR10
	Slide 52: Setting Hyperparameters
	Slide 53: kNN Results
	Slide 54: kNN Results
	Slide 55: K-Nearest Neighbors Summary
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Spatial Coverage Needs Increases with Dimension
	Slide 61: Spatial Coverage Needs Increases with Dimension
	Slide 62: k-Nearest Neighbor Drawbacks
	Slide 63: Linear Classiﬁer
	Slide 64: Linear classifiers : Motivation
	Slide 65: Plane Geometry
	Slide 66: Plane Geometry
	Slide 67: Linear Classifier
	Slide 68
	Slide 69
	Slide 70: f(x,W) = Wx
	Slide 71: f(x,W) = Wx
	Slide 72: f(x,W) = Wx
	Slide 73: f(x,W) = Wx
	Slide 74: f(x,W) = Wx
	Slide 75: f(x,W) = Wx
	Slide 76: f(x,W) = Wx+b
	Slide 77: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
	Slide 78: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
	Slide 79
	Slide 80: Difficult cases for linear classifiers
	Slide 81: Apply Transformations
	Slide 82: Example: Color Histogram
	Slide 83: Example: Histogram of Oriented Gradients (HoG)
	Slide 84
	Slide 85: Image Feature Aggregation
	Slide 86: Classification on Image Features
	Slide 87: Classification on Image Features
	Slide 88: Classification on Image Features
	Slide 89: Classification on Image Features
	Slide 90: How expressive are the values of W?
	Slide 91: How expressive are the values of W?
	Slide 92: Loss Function

