Deep Learning

Wojciech Palubicki

Course Goals

- Part 1
 - Introduction into Computer Vision
 - Introduction into Deep Learning
 - Development of **Deep Neural Networks** for vision tasks
- Part 2
 - Introduction into Natural Language Processing
 - Development of **Deep Neural Networks** for NLP

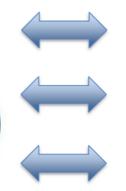
Computer Vision

Al and Computer Vision

Machine Learning

Deep Learning

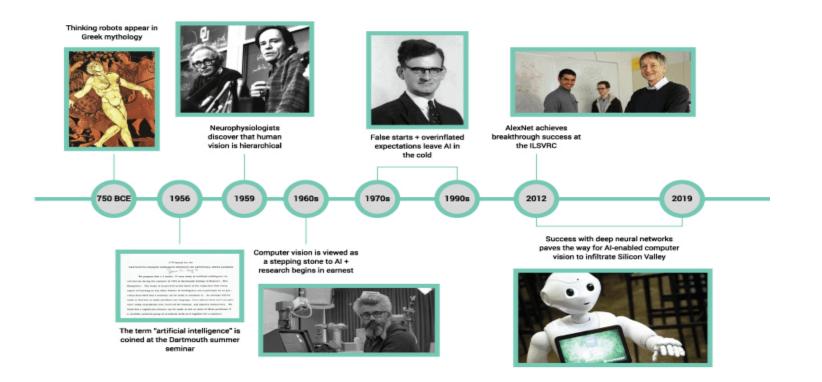
The subset of machine learning composed of algorithms that permit software to train itself to perform tasks, like speech and image recognition, by exposing multilayered neural networks to vast amounts of data. A subset of AI that includes abstruse statistical techniques that enable machines to improve at tasks with experience. The category includes deep learning Any technique that enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and machine learning (including deep learning)



Computer Vision

- Object detection
- Object classification
- Scene understanding
- Semantic scene segmentation
- 3D reconstruction
- Object tracking
- Human pose estimation
- Activity recognition
- VQA

Computer Vision History



Large Datasets 1M+

Detailed Labels

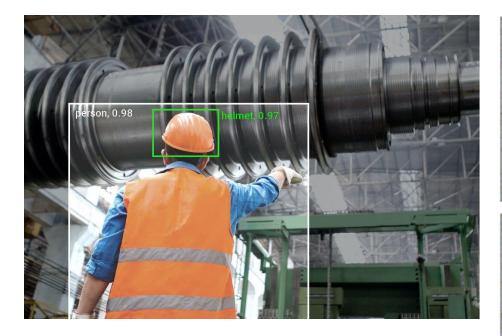
The Image Classification Challenge: 1,000 object classes 1,431,167 images

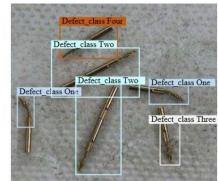
• • •

Imagenet Large Scale Visual Recognition Challenge

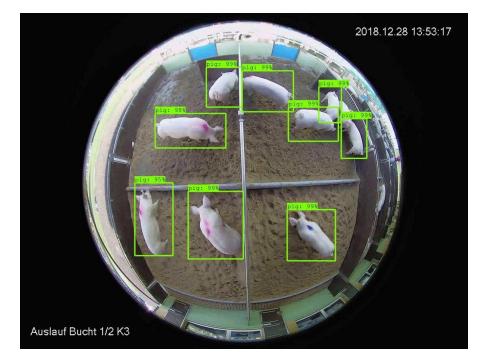
Classification Results (CLS)

Applications



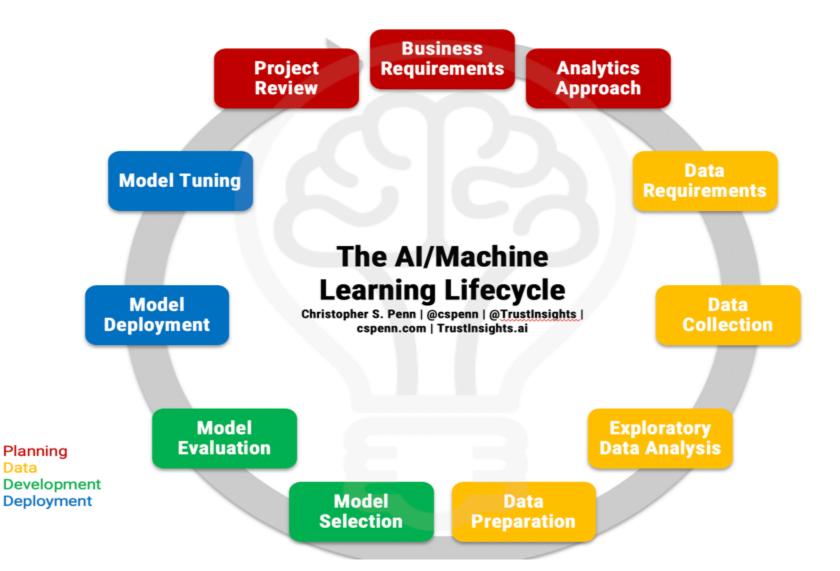


Applications



Applications





Data Collection

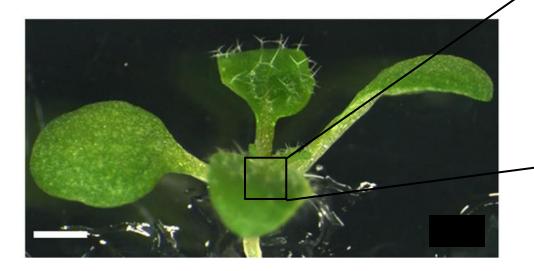
Grading

- Final Exam: written test about lecture material on computer vision
- Multiple Choice Test
- End of April
- 50% of final lecture grade
- Requirements: 3+ from labs

Image Classification

Select correct class from a given set of classes

Image Classification



[[105	112	108	111	104	99	106	99	96	103	112	119	104	97	93	87]
[91	98	102	106	104	79	98	103	99	105	123	136	110	105	94	85]
[76	85	90	105	128	105	87	96	95	99	115	112	106	103	99	85]
[99	81	81	93	120	131	127	100	95	98	102	99	96	93	101	94]
[106	91	61	64	69	91	88	85	101	107	109	98	75	84	96	95]
[114	108	85	55	55	69	64	54	64	87	112	129	98	74	84	91]
[133	137	147	103	65	81	80	65	52	54	74	84	102	93	85	82]
[128	137	144	140	109	95	86	70	62	65	63	63	60	73	86	101]
[125	133	148	137	119	121	117	94	65	79	80	65	54	64	72	98]
[127	125	131	147	133	127	126	131	111	96	89	75	61	64	72	84]
[115	114	109	123	150	148	131	118	113	109	100	92	74	65	72	78]
[89	93	90	97	108	147	131	118	113	114	113	109	106	95	77	80]
[63	77	86	81	77	79	102	123	117	115	117	125	125	130	115	87]
[62	65	82	89	78	71	80	101	124	126	119	101	107	114	131	119]
[63	65	75	88	89	71	62	81	120	138	135	105	81	98	110	118]
[87	65	71	87	106	95	69	45	76	130	126	107	92	94	105	112]
[118	97	82	86	117	123	116	66	41	51	95	93	89	95	102	107]
[164	146	112	80	82	120	124	104	76	48	45	66	88	101	102	109]
[157	170	157	120	93	86	114	132	112	97	69	55	70	82	99	94]
[130	128	134	161	139	100	109	118	121	134	114	87	65	53	69	86]
[128	112	96	117	150	144	120	115	104	107	102	93	87	81	72	79]
[123	107	96	86	83	112	153	149	122	109	104	75	80	107	112	99]
[122	121	102	80	82	86	94	117	145	148	153	102	58	78	92	107]
[122	164	148	103	71	56	78	83	93	103	119	139	102	61	69	84]]

Computational representation

An image is a tensor of integers between [0, 255]:

e.g. 1920 x 1080 x 3 (RGB)

Challenges: Different Viewpoints

Pixel values change when the camera moves.

Challenges: Different Backgrounds

Challenges: Different Illumination

Challenges: Occlusion

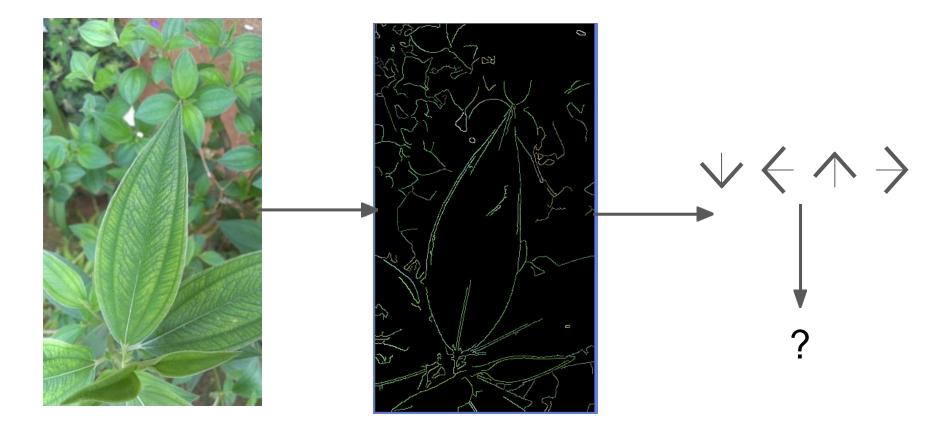
Challenges: Variation

Image Classifier

def classify_image(image):
 # Some magic here?
 return class_label

There is no deterministic, trivial way of selecting correct classes given just an input image

Rule-based Methods



Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

return test_labels

<pre>def train(images, labels):</pre>	airplane 🛛 🔍 🌠 🦐 📂 🔜 🖙 🏹 ୭	
<pre># Machine learning! return model</pre>	automobile 🎬 🇊 🏐 🎆 🏹 🎲 🞼	
recurn modec	bird 💦 🍋 🎆 🦷 📰 🌾 🔊	
	cat 💦 🐱 🎑 🖉 🔄 🖾 🖾	
<pre>def predict(model, test_images): # Use model to predict labels</pre>	deer 🛛 🚮 🦮 🐳 📝 🛣 🐳	

Example training set

Nearest Neighbor Classifier

First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label of the most similar training image

First classifier: Nearest Neighbor

Training data with labels

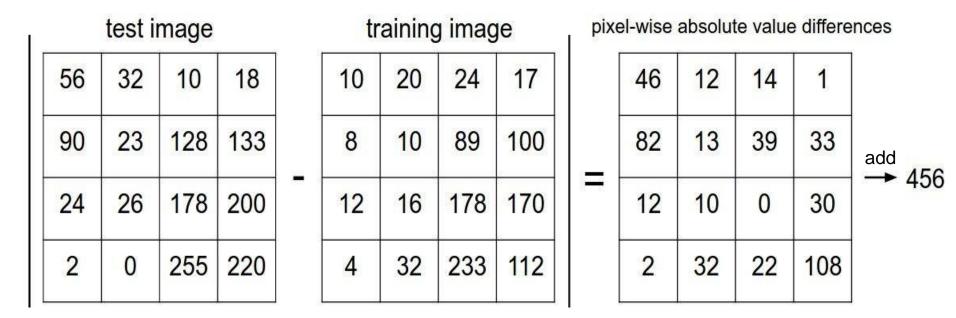
?

query data

Distance Metric

Distance Metric to compare images

L1 distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$



```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):

""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

Memorize training data

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):

```
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y
```

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

loop over all test rows
for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

For each test image: Find closest train image Predict label of nearest image

Nearest Neighbor classifier

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data

self.Xtr = X
self.ytr = y

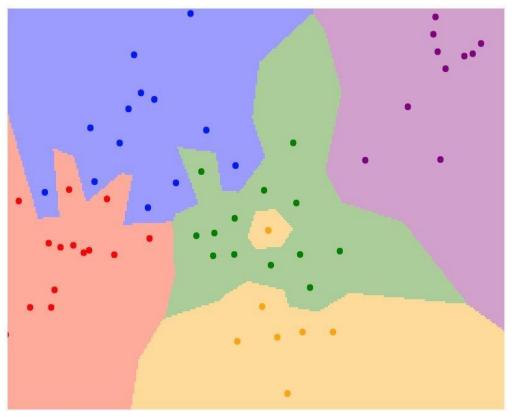
```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

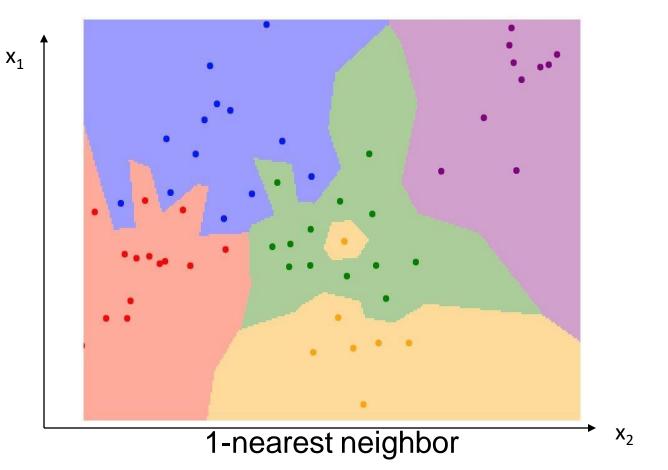
Nearest Neighbor classifier

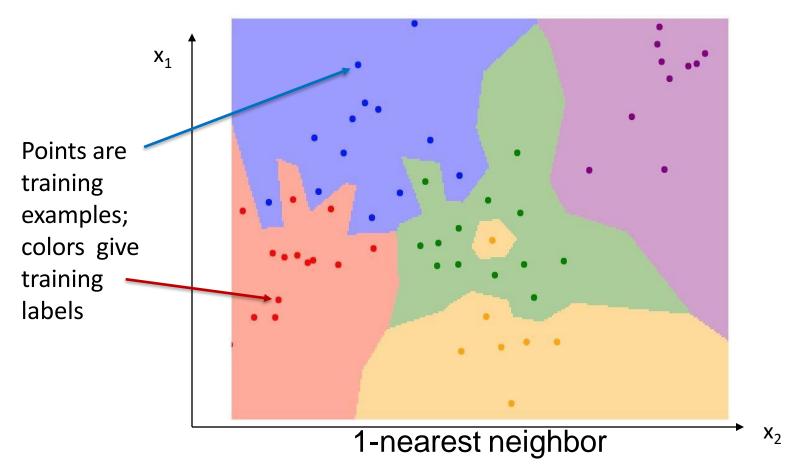
Train O(1) Predict O(N)

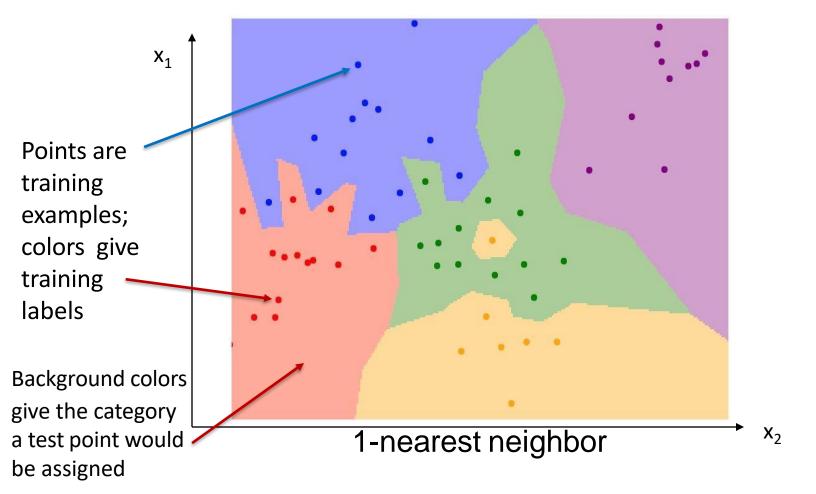


1-nearest neighbor

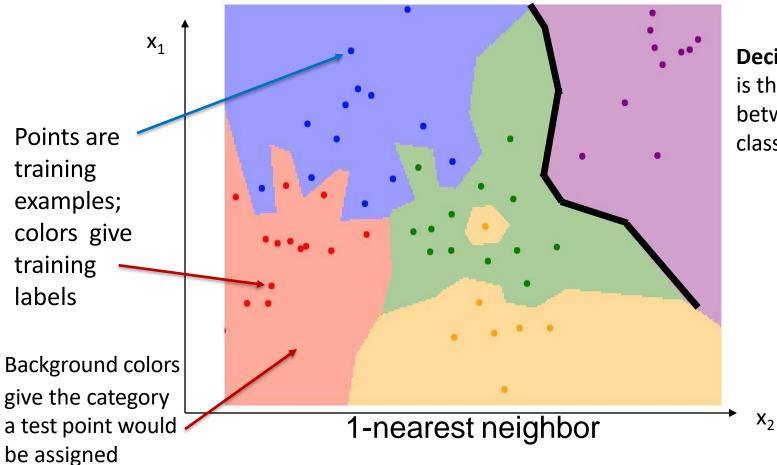
https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py







Example



Decision boundary is the boundary between two classification regions

Example

X₁ Points are training examples; colors give training labels Background colors give the category 1-nearest neighbor a test point would be assigned

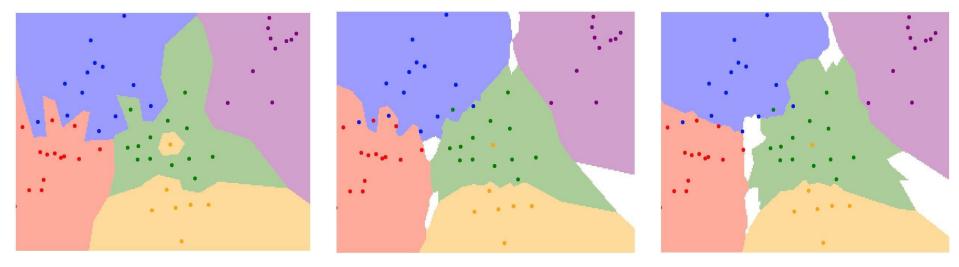
Decision boundary is the boundary between two classification regions

Decision boundaries can be noisy; affected by outliers

X₂

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

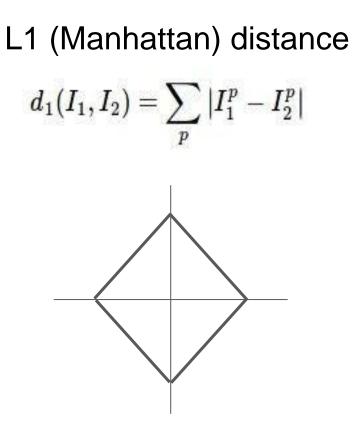


K = 1

K = 3

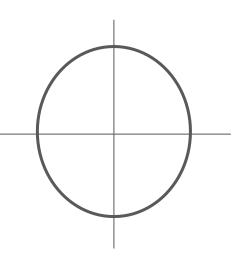
K = 5

K-Nearest Neighbors: Distance Metric



L2 (Euclidean) distance

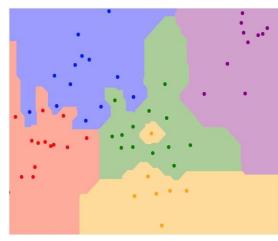
$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

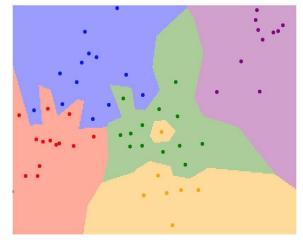
$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



K = 1

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$



K = 1

What is the optimal value of **k** to use? What is the optimal **distance metric** to use?

Hyperparameters are choices about the algorithms themselves we can't learn.

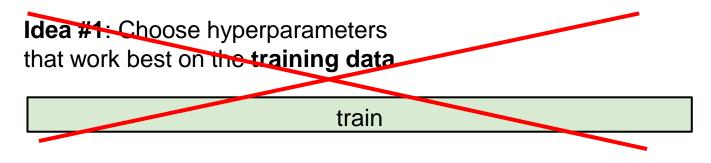
What is the optimal value of **k** to use? What is the optimal **distance metric** to use?

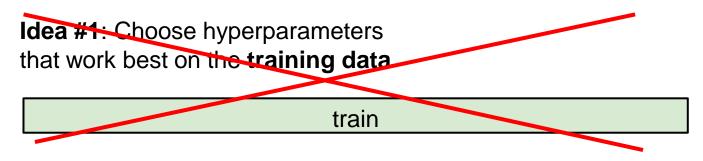
Hyperparameters are choices about the algorithms themselves we can't learn.

Problem-dependent: try different configuration settings

Idea #1: Choose hyperparameters that work best on the **training data**

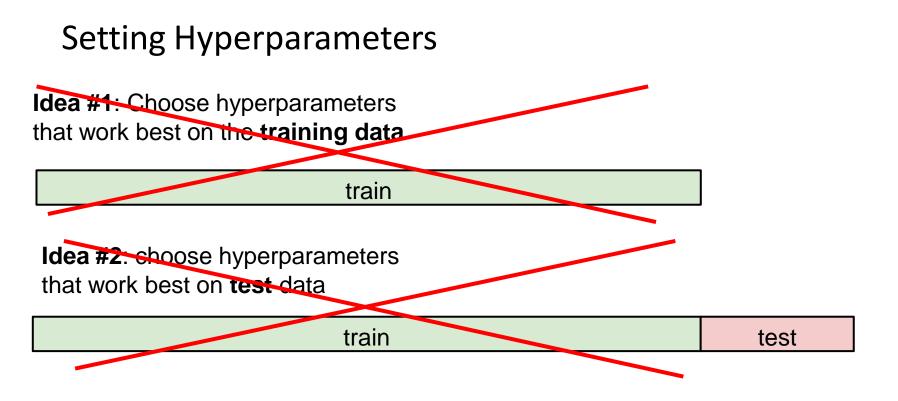
train

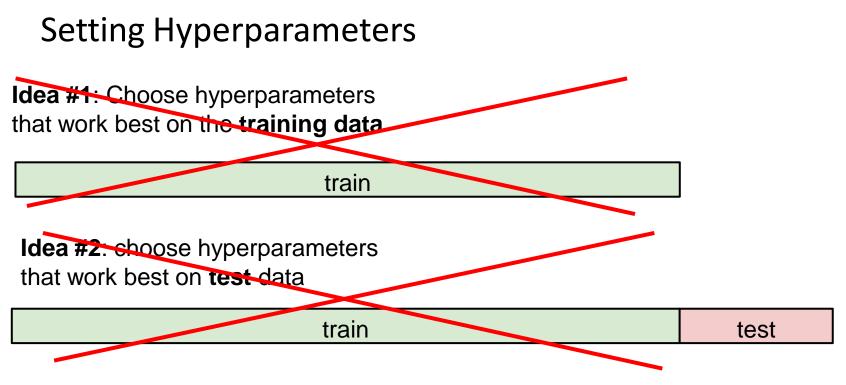




Idea #2: choose hyperparameters that work best on test data

train test





Idea #3: Split data into train, val; choose hyperparameters on val and evaluate on test

train	validation	test
-------	------------	------

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning

Example Dataset: CIFAR10

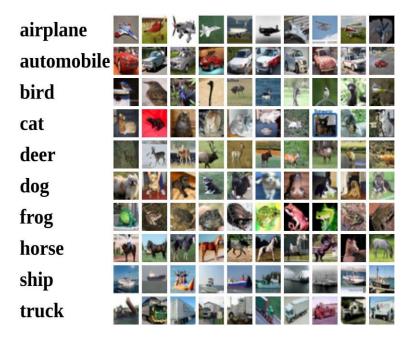
10 classes50,000 training images10,000 testing images

airplane	🔍 🌌 🧺 🗶 🔜 🕊 🏹 💓 🙀
automobile	📸 😂 🥶 🥃 🏹 🕄 🖏 🖉 🏹
bird	🚔 🍋 🎊 1 🕷 🖉 🚩 🔍 🕉 🎇
cat	1 🐱 🐱 🕄 🖉 🍜 🖏 🕷 🖏
deer	
dog	💓 🔣 🕵 👅 🌮 🎲 🗶 📩 🖄
frog	🔣 🗑 🥌 🍋 🌮 🖏 😴 🌌
horse	👬 🐋 🎬 📂 😹 📈 🚅 🖉 🔊
ship	si 🐂 🙇 🞿 🛥 🔤 🔤 🚉
truck	🔺 🏵 🛄 😂 💒 💐 🖉 🚝 🏠

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images



Test images and nearest neighbors

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.



Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that k ~= 7 works best for this data)

kNN Results

kNN Results

K-Nearest Neighbors Summary

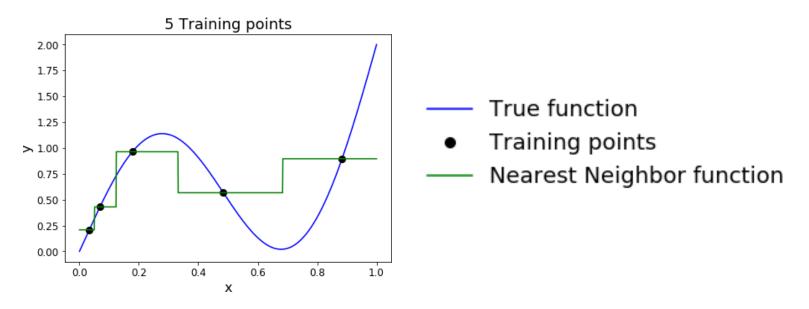
Image classification starts with a training set of images and labels. It predicts labels on a test set.

The **k-Nearest Neighbors** classifier predicts labels based on the k nearest training examples

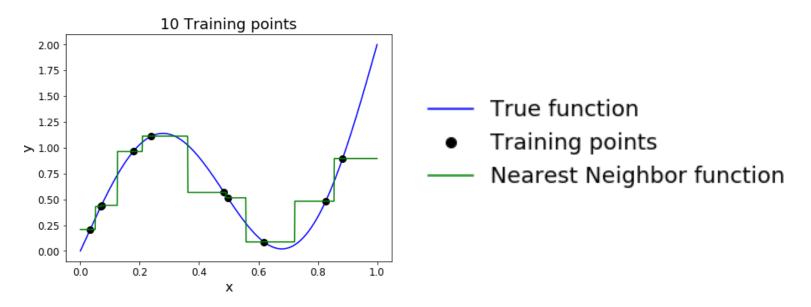
Distance metric and k are hyperparameters

Select hyperparameter values using a validation set

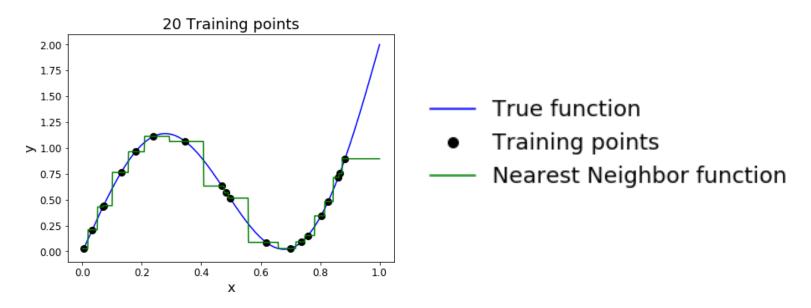
As the number of training samples goes to infinity, nearest neighbor can represent any^(*) function!



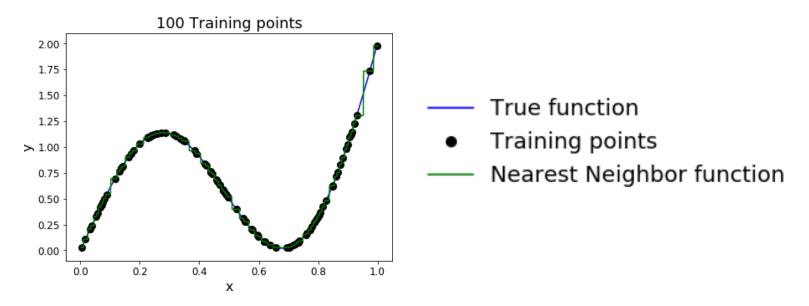
As the number of training samples goes to infinity, nearest neighbor can represent any^(*) function!



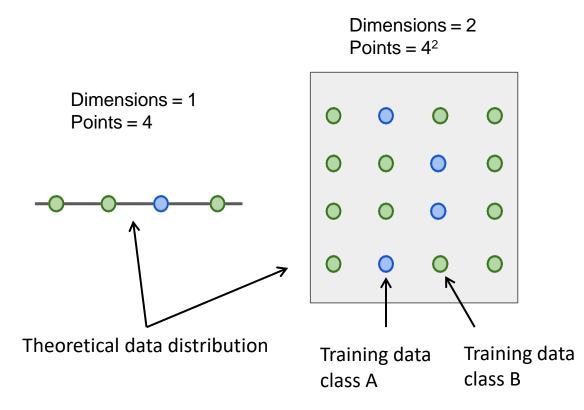
As the number of training samples goes to infinity, nearest neighbor can represent any^(*) function!



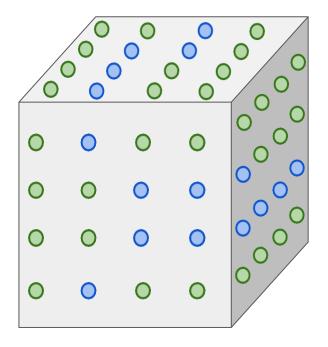
As the number of training samples goes to infinity, nearest neighbor can represent any^(*) function!



Spatial Coverage Needs Increases with Dimension



Dimensions = 3 Points = 4^3



Spatial Coverage Needs Increases with Dimension

Number of possible 32x32 binary images:

Number of elementary particles in the visible universe:

$2^{32x32} \approx 10^{308}$

≈ 10⁹⁷

k-Nearest Neighbor Drawbacks

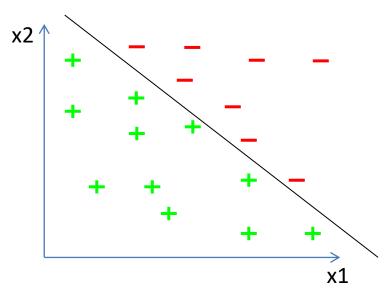
- Distance metrics on pixels are not informative
- Very slow at prediction

(all 3 images have same L2 distance to the one on the left)

Linear Classifier

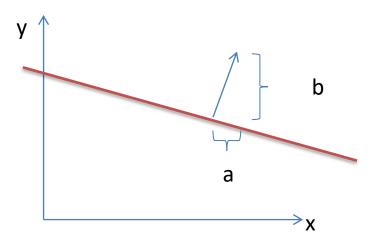
Linear classifiers : Motivation

- kNN produce decision boundaries by calculating them during prediction.
- Can we define a (simple) function during training to define decision boundaries directly?



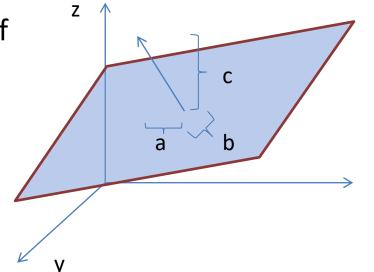
Plane Geometry

- Any line in 2D can be expressed as the set of solutions (x,y) to the equation ax+by+c=0 (an implicit line)
 - ax+by+c > 0 is one side of the line
 - ax+by+c < 0 is the other</p>
 - ax+by+c = 0 is the line itself



Plane Geometry

- In 3D, a (hyper)plane can be expressed as the set of solutions (x,y,z) to the equation ax+by+cz+d=0
 - ax+by+cz+d > 0 is one side of the plane
 - ax+by+cz+d < 0 is the other side</p>
 - ax+by+cz+d = 0 is the plane itself



Х

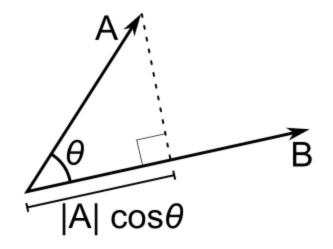
Linear Classifier

• In **d** dimensions,

 $c_0 + c_1^* x_1 + \dots + c_d^* x_d = 0$

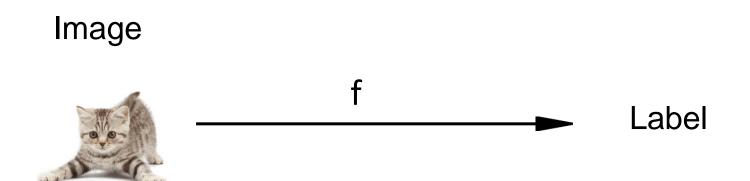
• Abbreviate with dot product:

 $c_0 + c \cdot x = c_0 + c_1^* x_1 + \dots + c_d^* x_d = 0$

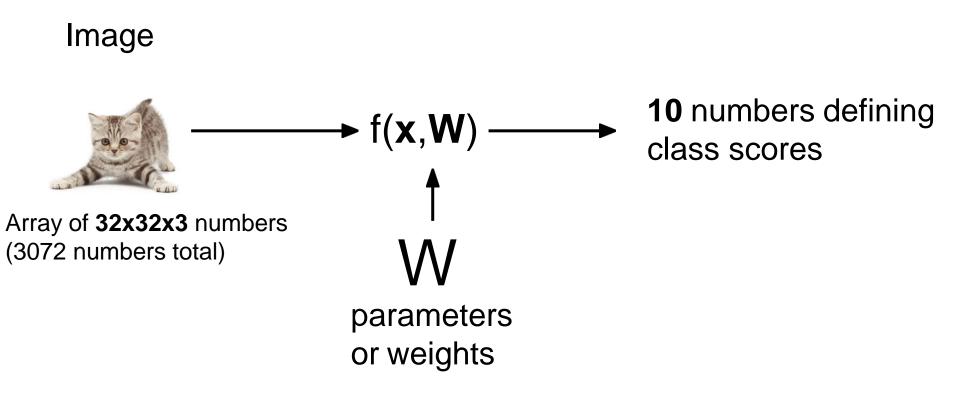


Dot product

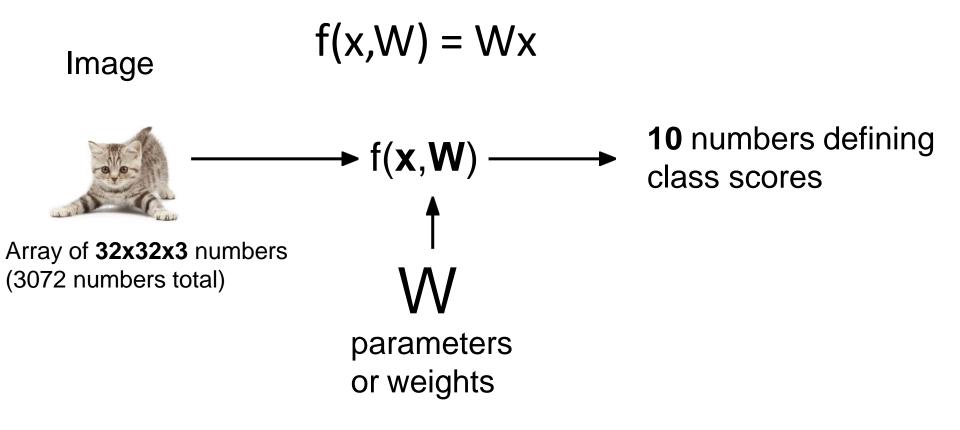
Describe relation between image and label



Describe relation between image and label



Parametric Approach: Linear Classifier

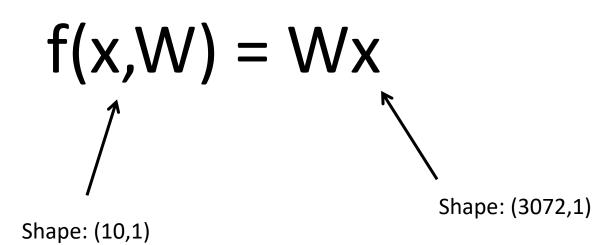


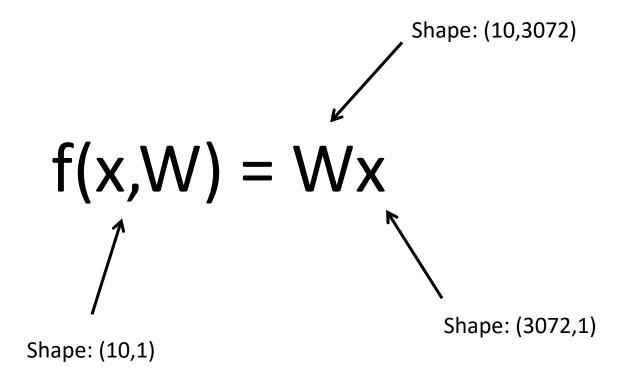
Parametric Approach: Linear Classifier

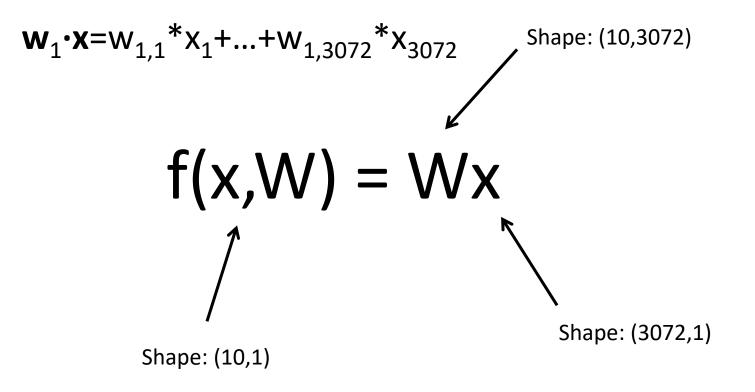
f(x,W) = Wx

Shape: (10,1)

Parametric Approach: Linear Classifier







$$w_1 \cdot x = w_{1,1} * x_1 + ... + w_{1,3072} * x_{3072}$$
 Shape: (10,3072)
 $f(x,W) = Wx$
 $f(x,W)$ Shape: (10,1)
Shape: (3072,1)

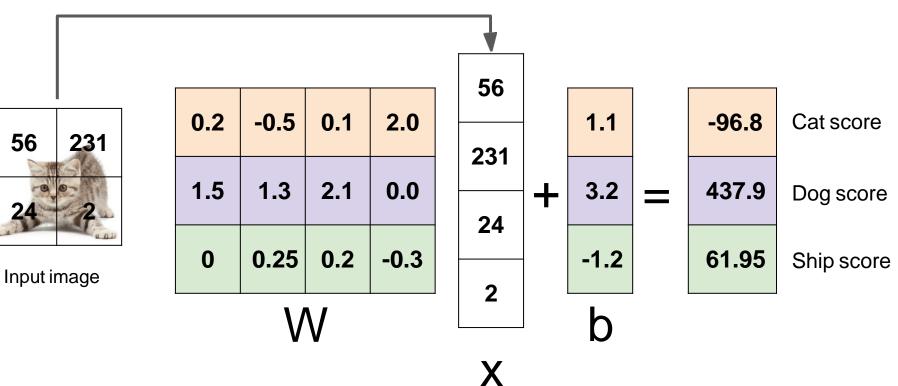
$$w_1 \cdot x = w_{1,1} * x_1 + ... + w_{1,3072} * x_{3072}$$

 $f(x,W) = Wx + b$
 $f(x,W)$ Shape: (10,3072)
 $f(x,W)$ Shape: (3072,1)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

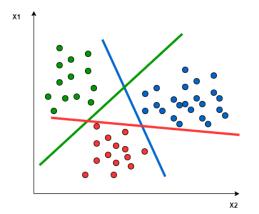


Flatten tensors into a vector

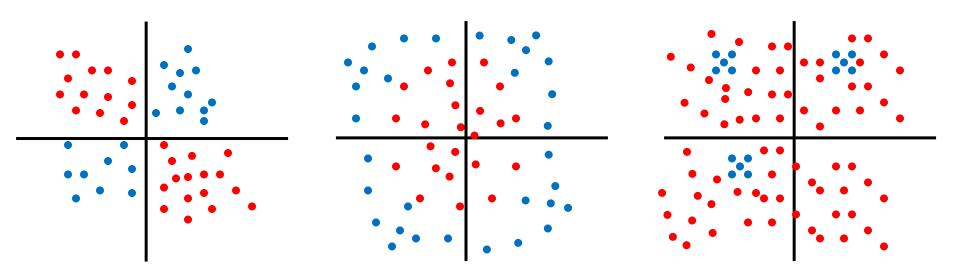
Linear Classifier Predict Efficiently

- Predict fast by generating scores with matrix-vector multiplications

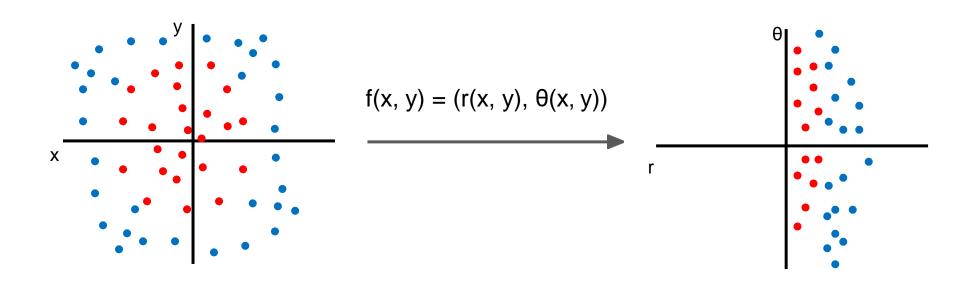
scores = W.dot(image) + b



Difficult cases for linear classifiers

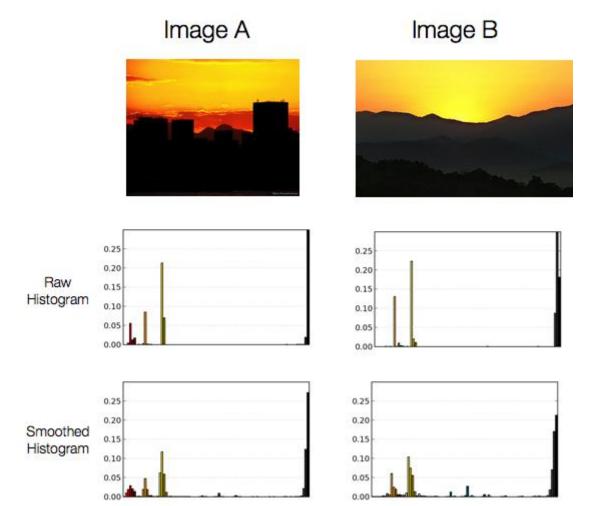


Apply Transformations



Extract features using transformations

Example: Color Histogram

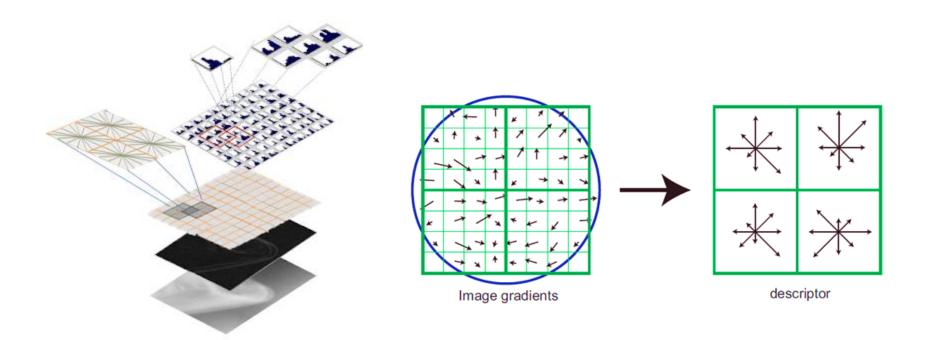


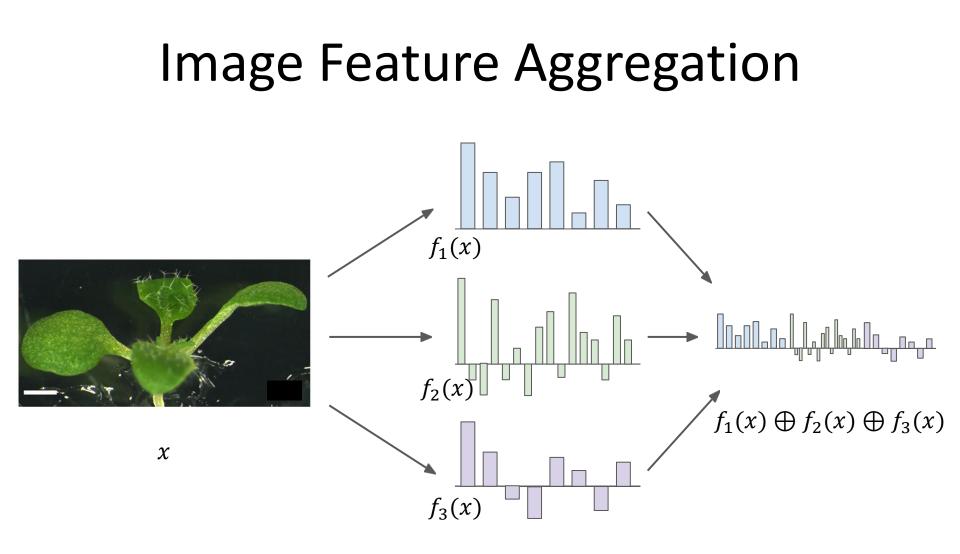
Example: Histogram of Oriented Gradients (HoG)

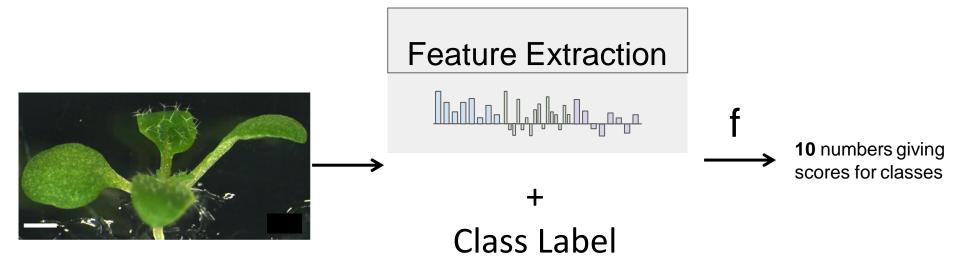
Histogram of Oriented Gradients

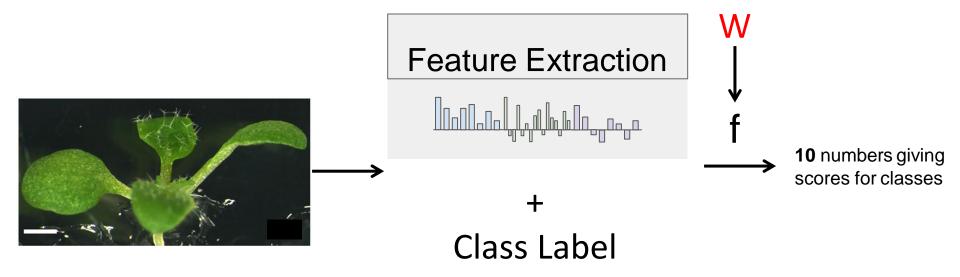
Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

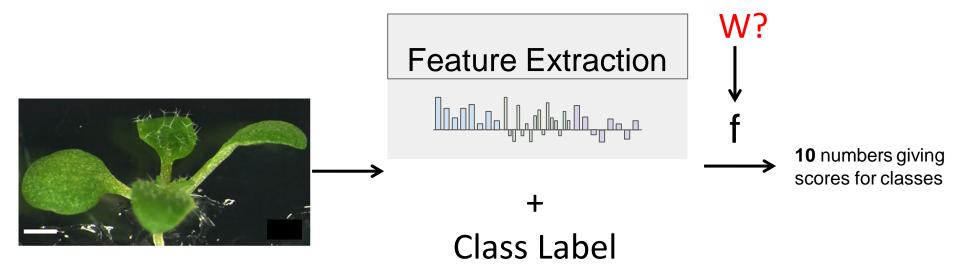
Example: Histogram of Oriented Gradients (HoG)

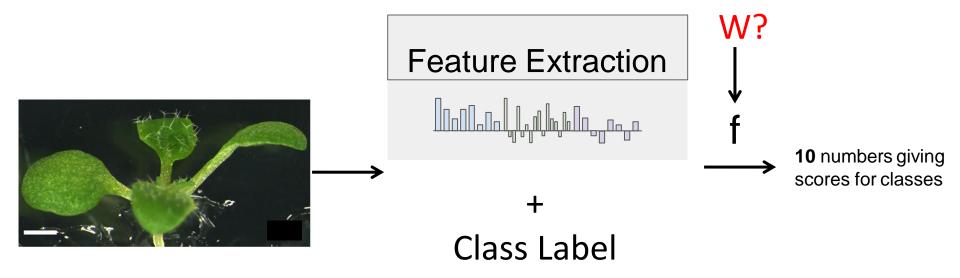






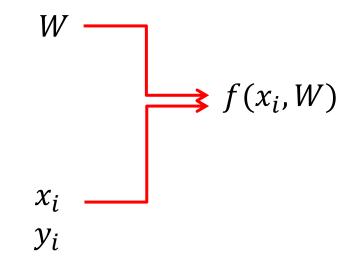




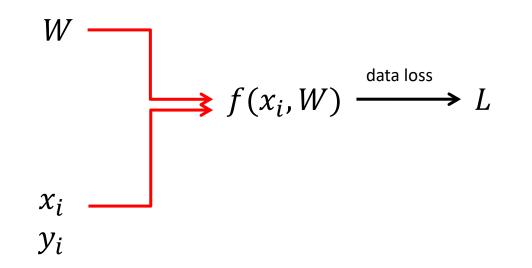


Measure how well a set of values for W classifies an input

How expressive are the values of W?

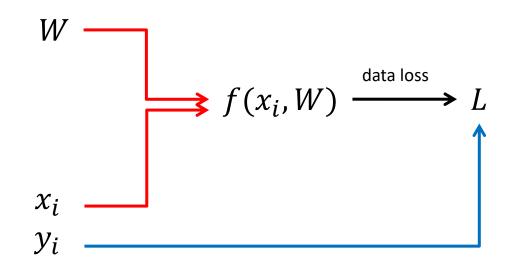


How expressive are the values of W?



L: Metric to assess what loss of data classification our model incurs

Loss Function



L: Metric to assess what loss of data classification our model incurs