
Deep Learning



So far: Image Classification

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...Vector:

4096

Fully-Connected: 
4096 to 1000



Computer Vision Tasks

Classification
Semantic

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple Objects



Today: Object Detection

Classification
Semantic 

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple Objects



Object Detection: Task Definition

Input: Single RGB Image

Output: A set of detected objects; 
For each object predict:

1. Category label (from fixed, 
known set of categories)

2. Bounding box (four numbers: 
x, y, width, height)



Object Detection: Challenges

- Multiple outputs: Need to output 
variable numbers of objects per image

- Multiple types of output: Need to 
predict ”what” (category label) as well 
as “where” (bounding box)

- Large images: Classification works at 
224x224; need higher resolution for
detection, often ~800x600 or higher



Detecting a single object

Vector:
4096



Detecting a single object

Vector:
4096

Fully 
Connected: 

4096 to 1000

Correct label:
Cat

Softmax 
Loss

“What”

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...



Detecting a single object

Vector:
4096

Fully 
Connected: 

4096 to 1000

Box 
Coordinates 
(x, y, w, h)

Fully 
Connected: 
4096 to 4

L2 Loss

Correct label:
Cat

Softmax 
Loss

“What”

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Correct box: 
(x’, y’, w’, h’)

“Where”

Treat localization as a 
regression problem



Detecting a single object

Vector:
4096

Fully 
Connected: 

4096 to 1000

Box 
Coordinates 
(x, y, w, h)

Fully 
Connected: 
4096 to 4

L2 Loss

Loss

Correct label:
Cat

Softmax 
Loss

“What”

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Correct box: 
(x’, y’, w’, h’)

Weighted 
Sum

“Where”

Treat localization as a 
regression problem



Detecting a single object

Vector:
4096

Fully 
Connected: 

4096 to 1000

Box 
Coordinates 
(x, y, w, h)

Fully 
Connected: 
4096 to 4

L2 Loss

“What”

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Correct box: 
(x’, y’, w’, h’)

Weighted 
Sum

Multitask 
Loss

Loss

“Where”

Treat localization as a 
regression problem

Correct label:
Cat

Softmax 
Loss



Detecting a single object

Vector:
4096

Fully 
Connected: 

4096 to 1000

Box 
Coordinates 
(x, y, w, h)

Fully 
Connected: 
4096 to 4

L2 Loss

“What”

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

Correct box: 
(x’, y’, w’, h’)

Weighted 
Sum

Multitask 
Loss

Loss

Often pretrained 
on ImageNet 
(Transfer learning)

“Where”

Treat localization as a 
regression problem

Correct label:
Cat

Softmax 
Loss



CAT: (x, y, w, h)

DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, w, h)

DUCK: (x, y, w, h)
DUCK: (x, y, w, h)
….

4 numbers

12 numbers

Many 
numbers

Detecting Multiple Objects: Sliding Window



Detecting Multiple Objects: Sliding Window

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Dog? NO 
Cat? NO
Background? YES



Detecting Multiple Objects: Sliding Window

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Dog? YES
Cat? NO 
Background? NO



Detecting Multiple Objects: Sliding Window

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Dog? YES
Cat? NO 
Background? NO



Detecting Multiple Objects: Sliding Window

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Dog? NO 
Cat? YES
Background? NO



Detecting Multiple Objects: Sliding Window

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

Consider a box of size h x w in an image of size H x W: 
Possible x positions: W – w + 1 
Possible y positions: H – h + 1 
Possible positions: (W – w + 1) * (H – h + 1)



Detecting Multiple Objects: Sliding Window

Apply a CNN to many different 
crops of the image, CNN classifies 
each crop as object or background

800 x 600 image 
has ~58M boxes

Consider a box of size h x w in an image of size H x W: 
Possible x positions: W – w + 1 
Possible y positions: H – h + 1 
Possible positions: (W – w + 1) * (H – h + 1)



Region Proposals

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013
Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

● Find a small set of boxes that are likely to cover all objects
● Often based on heuristics: e.g. look for “blob-like” image regions
● Relatively fast to run; e.g. Selective Search gives 2000 region 

proposals in a few seconds on CPU



R-CNN: Region-Based CNN

Input 
image

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.



R-CNN: Region-Based CNN

Regions of 
Interest (RoI)

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.

Input 
image

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)



R-CNN: Region-Based CNN

Input 
image

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Warped image 
regions (224x224)



R-CNN: Region-Based CNN

Conv 
Net

Conv 
Net

Conv 
Net

Forward each 
region through 
ConvNet

Warped image 
regions (224x224)

Input 
image

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014..

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)



R-CNN: Region-Based CNN

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
Class

Input 
image

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.

Forward each 
region through 
ConvNet

Warped image 
regions (224x224)

Classify each region

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)



R-CNN: Region-Based CNN

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
Class

Input 
image

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014..

Forward each 
region through 
ConvNet

Warped image 
regions (224x224)

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)



R-CNN: Region-Based CNN

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
Class

Forward each 
region through 
ConvNet

Warped image 
regions (224x224)

Regions of 
Interest (RoI) 
from a proposal 
method (~2k) Girshick et al, “Rich feature hierarchies for accurate object detection and 

semantic segmentation”, CVPR 2014.

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox
Region proposal: (px, py, ph, pw) 
Transform: (tx, ty, th, tw)
Output box: (bx, by, bh, bw)

Translate relative to box size: 
bx = px + pwtx by = py + phty

Log-space scale transform:
bw = pwexp(tw) bh = phexp(th)



R-CNN: Test-time

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
Class

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.

Bbox
Bbox

Bbox

Input: Single RGB Image

1. Run region proposal method to 
compute ~2000 region proposals

2. Resize each region to 224x224 and run 
independently through CNN to predict
class scores and bbox transform

3. Use scores to select a subset of region 
proposals to output
(Many choices here: threshold on
background, per-category, or take 
top K proposals per image)

4. Compare with ground-truth boxes



Comparing Boxes: Intersection over Union (IoU)

Our Prediction

Ground 
Truth

How can we compare our
prediction to the ground-truth box?



Comparing Boxes: Intersection over Union (IoU)

Our Prediction

Ground 
Truth

How can we compare our
prediction to the ground-truth box?

Intersection over Union (IoU) 
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏



Comparing Boxes: Intersection over Union (IoU)

Our Prediction

Ground 
Truth

How can we compare our
prediction to the ground-truth box?

Intersection over Union (IoU) 
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

IoU > 0.5 is “decent”

IoU = 0.54



Comparing Boxes: Intersection over Union (IoU)

Our Prediction

Ground 
Truth

How can we compare our
prediction to the ground-truth box?

Intersection over Union (IoU) 
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

IoU > 0.5 is “decent”,
IoU > 0.7 is “pretty good”,

IoU = 0.71



Comparing Boxes: Intersection over Union (IoU)

Our Prediction

Ground 
Truth

How can we compare our
prediction to the ground-truth box?

Intersection over Union (IoU) 
(Also called “Jaccard similarity” or 
“Jaccard index”):

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏

IoU > 0.5 is “decent”,
IoU > 0.7 is “pretty good”, 
IoU > 0.9 is “almost perfect”

IoU = 0.91



P(dog) = 0.9 P(dog) = 0.75

P(dog) = 0.7

P(dog) = 0.8

Overlapping Boxes: Non-Max Suppression (NMS)
Problem: Object detectors often 
output many overlapping detections:



Overlapping Boxes: Non-Max Suppression (NMS)

P(dog) = 0.9

Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

P(dog) = 0.75

P(dog) = 0.7

P(dog) = 0.8



Overlapping Boxes: Non-Max Suppression (NMS)

P(dog) = 0.9
Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

IoU(■,■) = 0.78
IoU(■,■) = 0.05

IoU(■,■) = 0.07
P(dog) = 0.8

P(dog) = 0.75

P(dog) = 0.7



Overlapping Boxes: Non-Max Suppression (NMS)
Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

P(dog) = 0.75

P(dog) = 0.7

IoU(■,■) = 0.74

P(dog) = 0.9



Overlapping Boxes: Non-Max Suppression (NMS)
Problem: Object detectors often 
output many overlapping detections: P(dog) = 0.75P(dog) = 0.9
Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1



Overlapping Boxes: Non-Max Suppression (NMS)
Problem: Object detectors often 
output many overlapping detections:

Solution: Post-process raw
detections using Non-Max
Suppression (NMS)

1. Select next highest-scoring box
2. Eliminate lower-scoring boxes 

with IoU > threshold (e.g. 0.7)
3. If any boxes remain, GOTO 1

Problem: NMS may eliminate ”good” 
boxes when objects are highly 
overlapping → Soft-NMS



Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve



Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

0.99 0.95 0.90

All dog detections sorted by score

0.50

All ground-truth dog boxes

0.5



Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative

0.99 0.95 0.90

All dog detections sorted by score

0.50

All ground-truth dog boxes

Match: IoU > 0.5

0.5



Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.50

All ground-truth dog boxes

Match: IoU > 0.5

Precision = 1/1 = 1.0 
Recall = 1/3 = 0.33

0.5

P
re

ci
si

o
n

Recall 1.0



Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.50

All ground-truth dog boxes

Match: IoU > 0.5

Precision = 2/2 = 1.0 
Recall = 2/3 = 0.67

0.5

P
re

ci
si

o
n

Recall 1.0



Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.50

All ground-truth dog boxes

No match > 0.5 IoU with GT

Precision = 2/3 = 0.67 
Recall = 2/3 = 0.67

0.5

P
re

ci
si

o
n

Recall 1.0



Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.50

All ground-truth dog boxes

No match > 0.5 IoU with GT

Precision = 2/4 = 0.5 
Recall = 2/3 = 0.67

0.5

P
re

ci
si

o
n

Recall 1.0



Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

0.99 0.95 0.90

All dog detections sorted by score

0.50

All ground-truth dog boxes

Match: > 0.5 IoU

Precision = 3/5 = 0.6 
Recall = 3/3 = 1.0

0.5

P
re

ci
si

o
n

Recall 1.0



Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve

0.99 0.95 0.90

All dog detections sorted by score

0.50

All ground-truth dog boxes

Recall 1.0

0.5

P
re

ci
si

o
n

Dog AP = 0.86



Evaluating Object Detectors: 
Mean Average Precision (mAP)

1. Run object detector on all test images (with NMS)
2. For each category, compute Average Precision (AP) = 

area under Precision vs Recall Curve
1. For each detection (highest score to lowest score)

1. If it matches some GT box with IoU > 0.5, 
mark it as positive and eliminate the GT

2. Otherwise mark it as negative
3. Plot a point on PR Curve

2. Average Precision (AP) = area under PR curve
3. Mean Average Precision (mAP) = average of AP for 

each category

Car AP = 0.65
Cat AP = 0.80
Dog AP = 0.86

mAP@0.5 = 0.77

mailto:mAP@0.5


R-CNN: Region-Based CNN

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
Class

Forward each 
region through 
ConvNet

Warped image 
regions (224x224)

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox

Regions of 
Interest (RoI)



R-CNN: Region-Based CNN

Input

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
Class

image
Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014..

Forward each 
region through 
ConvNet

Warped image 
regions (224x224)

Regions of 
Interest (RoI)

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox

Problem: Very slow 
Need to do ~2k forward 
passes for each image



R-CNN: Region-Based CNN

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
Class

Forward each 
region through 
ConvNet

Warped image 
regions (224x224)

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.

Classify each region

Bbox
Bounding box regression:
Predict “transform” to correct the 
RoI: 4 numbers (tx, ty, th, tw)Bbox

Bbox

Problem: Very slow 
Need to do ~2k forward 
passes for each image

Solution: Run CNN
*before* warping

Regions of 
Interest (RoI)



Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
ClassBbox

Bbox

Bbox

“Slow” R-CNN
Process each region 

independently



Fast R-CNN

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
ClassBbox

Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

Input image



Fast R-CNN

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
ClassBbox

Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

ConvNet

Image features

Run whole image 
through ConvNet

Input image

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc



Fast R-CNN

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
ClassBbox

Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

ConvNet

Image features

Run whole image 
through ConvNet

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Input image

Regions of 
Interest (RoIs) 
from a proposal 
method



Fast R-CNN

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
ClassBbox

Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

ConvNet

Crop + Resize features 

Image features

Run whole image 
through ConvNet

Input image

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of 
Interest (RoIs) 
from a proposal 
method



Fast R-CNN

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
ClassBbox

Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

ConvNet

Per-Region Network

Crop + Resize features 

Image features

Run whole image 
through ConvNet

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of 
Interest (RoIs) 
from a proposal 
method

C
N

N

C
N

N

C
N

N

Input image



Fast R-CNN

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
ClassBbox

Bbox

Bbox

“Slow” R-CNN
Process each region 

independently

ConvNet

Per-Region Network

Crop + Resize features 

Image features

Run whole image 
through ConvNet

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of 
Interest (RoIs) 
from a proposal 
method

C
N

N

C
N

N

C
N

N

Bbox

Input image

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region



Fast R-CNN

ConvNet

Per-Region Network

Crop + Resize features 

Image features

Run whole image 
through ConvNet

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of 
Interest (RoIs) 
from a proposal 
method

C
N

N

C
N

N

C
N

N

Bbox

overlapping region proposals
Input image

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region

Most of the computation 
happens in backbone 
network; this saves work for

Per-Region network is 
relatively lightweight



Fast R-CNN

ConvNet

Run whole image 
through ConvNet

Per-Region Network

Crop + Resize features 

Image features

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of 
Interest (RoIs) 
from a proposal 
method

C
N

N

C
N

N

C
N

N

Bbox

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region Example: 

When using 
AlexNet for 
detection, five 
conv layers are 
used for 
backbone and
two FC layers are
used for per-
region network

Input image



Softmax

3x3 conv, 64

FC 1000

Pool

7x7 conv, 64, / 2

Input

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512 

3x3 conv, 512, /2

PoolFast R-CNN

ConvNet

Run whole image 
through ConvNet

Per-Region Network

Crop + Resize features 

Image features

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of 
Interest (RoIs) 
from a proposal 
method

C
N

N

C
N

N

C
N

N

Bbox

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region Example:

For ResNet, last 
stage is used as 
per-region 
network; the rest 
of the network is 
used as backbone

Input image



Fast R-CNN

ConvNet

Run whole image 
through ConvNet

Crop + Resize features

Image features

Per-Region Network

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of 
Interest (RoIs) 
from a proposal 
method

C
N

N

C
N

N

C
N

N

Bbox

Input image

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region

How to crop 
features?

Crop + Resize features 

Image features



Cropping Features: RoI Pool

Input Image 
(e.g. 3 x 640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.



Cropping Features: RoI Pool

Input Image 
(e.g. 3 x 640 x 480)

CNN

Image features 
(e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.



Cropping Features: RoI Pool

Input Image 
(e.g. 3 x 640 x 480)

CNN

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

Girshick, “Fast R-CNN”, ICCV 2015.



Cropping Features: RoI Pool “Snap” to

Input Image 
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

grid cells



Cropping Features: RoI Pool “Snap” to

Input Image 
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions



Cropping Features: RoI Pool “Snap” to

Input Image 
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Max-pool within 
each subregion

Region features 
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the 
same size even if input 

regions have different sizes!



Cropping Features: RoI Pool “Snap” to

Input Image 
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Max-pool within 
each subregion

Region features 
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the 
same size even if input 

regions have different sizes!
Problem: Slight misalignment due to
snapping; different-sized subregions is weird



Cropping Features: RoI Align

Input Image 
(e.g. 3 x 640 x 480)

CNN

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

No “snapping”!

He et al, “Mask R-CNN”, ICCV 2017

Divide into equal-sized subregions 
(may not be aligned to grid!)



Cropping Features: RoI Align

Input Image 
(e.g. 3 x 640 x 480)

CNN

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

No “snapping”!

He et al, “Mask R-CNN”, ICCV 2017

Divide into equal-sized subregions 
(may not be aligned to grid!)

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation



Cropping Features: RoI Align

CNN

Project proposal 
onto features

No “snapping”!

(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Feature fxy for point (x, y) is a

linear combination of features 
at its four neighboring grid cells:

Divide into equal-sized subregions 
(may not be aligned to grid!)

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

Input Image Image features



Cropping Features: RoI Align

Input Image 
(e.g. 3 x 640 x 480)

CNN

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

No “snapping”!

Divide into equal-sized subregions 
(may not be aligned to grid!)

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

After sampling, max-
pool in each subregion

Region features 
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)



Fast R-CNN vs “Slow” R-CNN

ConvNet

Input image

Per-Region Network

Crop + Resize features 

Image features

Run whole image 
through ConvNet

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

Regions of 
Interest (RoIs) 
from a proposal 
method

C
N

N

C
N

N

C
N

N

Bbox

Class

Bbox

Class

Bbox

Class

Category and box 
transform per region

Input 
image

Conv 
Net

Conv 
Net

Conv 
Net

Class

Class
Class

Regions of 
Interest (RoI) 
from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Warped image 
regions (224x224)

Bbox
Bbox

Bbox

Fast R-CNN: Apply differentiable 
cropping to shared image features

“Slow” R-CNN: Apply differentiable 
cropping to shared image features



Fast R-CNN vs “Slow” R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. 
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN vs “Slow” R-CNN

Problem: Runtime 
dominated by 
region proposals

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. 
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN vs “Slow” R-CNN

Problem: Runtime 
dominated by 
region proposals

Recall: Region proposals computed by 
heuristic ”Selective Search” algorithm on 
CPU -- let’s learn them with a CNN instead

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014. 
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015



Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 
Figure copyright 2015, Ross Girshick; reproduced with permission

Insert Region Proposal 
Network (RPN) to predict 
proposals from features

Otherwise same as Fast R-CNN: 
Crop features for each 
proposal, classify each one

Faster R-CNN: Learnable Region Proposals



Region Proposal Network (RPN)

CNN

Input Image 
(e.g. 3 x 640 x 480) Image features 

(e.g. 512 x 20 x 15)

Run backbone CNN to get 
features aligned to input image



CNN

Input Image 
(e.g. 3 x 640 x 480) Image features 

(e.g. 512 x 20 x 15)

Imagine an anchor box of 
fixed size at each point in 

the feature map

Region Proposal Network (RPN)
Run backbone CNN to get 
features aligned to input image



CNN

Input Image 
(e.g. 3 x 640 x 480) Image features 

(e.g. 512 x 20 x 15)

Imagine an anchor box of 
fixed size at each point in 

the feature map

Region Proposal Network (RPN)
Run backbone CNN to get 
features aligned to input image

At each point, predict whether 
the corresponding anchor 

contains an object (per-cell 
logistic regression, predict 

scores with conv layer)

Conv

Anchor is an 
object?

1 x 20 x 15



Region Proposal Network (RPN)
Run backbone CNN to get 
features aligned to input image

CNN

Input Image 
(e.g. 3 x 640 x 480) Image features 

(e.g. 512 x 20 x 15)

Imagine an anchor box of 
fixed size at each point in 

the feature map

Anchor is an 
object?

1 x 20 x 15

Box transforms 
4 x 20 x 15

For positive boxes, also predict 
a box transform to regress 

from anchor box to object box

Conv



Region Proposal Network (RPN)

CNN

Input Image 
(e.g. 3 x 640 x 480) Image features 

(e.g. 512 x 20 x 15)

Problem: Anchor box may 
have the wrong size / shape 

Solution: Use K different 
anchor boxes at each point!Run backbone CNN to get

features aligned to input image

Anchor is an 
object?

K x 20 x 15

Box transforms
4K x 20 x 15

At test time: sort all
K*20*15 boxes by their 

score, and take the top ~300 
as our region proposals

Conv



Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 
Figure copyright 2015, Ross Girshick; reproduced with permission

Jointly train with 4 losses:

1. RPN classification: anchor box is 
object / not an object

2. RPN regression: predict transform 
from anchor box to proposal box

3. Object classification: classify 
proposals as background / object
class

4. Object regression: predict transform 
from proposal box to object box

Faster R-CNN: Learnable Region Proposals



Faster R-CNN: Learnable Region Proposals



Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a
Two-stage object detector

First stage: Run once per image
- Backbone network
- Region proposal network

Second stage: Run once per region
- Crop features: RoI pool / align
- Predict object class
- Prediction bbox offset



Faster R-CNN: Learnable Region Proposals

Faster R-CNN is a
Two-stage object detector

First stage: Run once per image
- Backbone network
- Region proposal network

Second stage: Run once per region
- Crop features: RoI pool / align
- Predict object class
- Prediction bbox offset

Question: Do we really 
need the second stage?



Single-Stage Object Detection

CNN

Input Image 
(e.g. 3 x 640 x 480) Image features 

(e.g. 512 x 20 x 15)

RPN: Classify each anchor as 
object / not object

Single-Stage Detector: Classify 
each object as one of CRun backbone CNN to get

features aligned to input image categories (or background)

Anchor category 
(C+1) x K x 20 x 15

Conv

Box transforms 
4K x 20 x 15

Remember: K anchors 
at each position in 
image feature map



Single-Stage Object Detection

CNN

Input Image 
(e.g. 3 x 640 x 480) Image features 

(e.g. 512 x 20 x 15)

RPN: Classify each anchor as 
object / not object

Single-Stage Detector: Classify 
each object as one of CRun backbone CNN to get

features aligned to input image categories (or background)

Anchor category 
(C+1) x K x 20 x 15

Conv

Box transforms
C x 4K x 20 x 15

Sometimes use category-
specific regression: Predict 
different box transforms for 
each categoryRedmon et al, “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016 

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017



Object Detection: Lots of variables!

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017

These results are a few years old … since
then GPUs have gotten faster, and we’ve
improved performance with many tricks:
- Train longer!
- Multiscale backbone: Feature Pyramid 

Networks
- Better backbone: ResNeXt
- Single-Stage methods have improved
- Very big models work better
- Test-time augmentation pushes 

numbers up
- Big ensembles, more data, etc

Mask R-CNN 
w/RexNeXt-152 
(281 ms, 49.3 mAP)

Current leaderboard
winner: 66 mAP 
Method ???
Runtime ???

https://codalab.lisn.upsaclay.fr/competitions/7384#results



Summary

Input
image

Conv

Net

Conv

Net

Conv

Net

Class

Class

Bbox Class

Regions of

Interest (RoI)

from a proposal

method (~2k)

Forward each

region through

ConvNet

Warped image

regions (224x224)

Bbox

Bbox

Fast R-CNN: Apply 
differentiable 
cropping to shared
image features

“Slow” R-CNN: Run
CNN independently
for each region

Faster R-CNN: 
Compute proposals 
with CNN

ConvNet

Input image

Per-Region Network

Crop + Resize features

Image features

Run whole image
through ConvNet

“Backbone”

network:
AlexNet, VGG,
ResNet, etc

Regions of

Interest (RoIs)
from a proposal
method

CN
N

CN
N

CN
N

Bbox Bbox Bbox

Class Class Class

Category and box

transform per region

Single-Stage:
Fully convolutional 
detector


	Slide 1: Deep Learning
	Slide 2: So far: Image Classification
	Slide 3: Computer Vision Tasks
	Slide 4: Today: Object Detection
	Slide 5: Object Detection: Task Definition
	Slide 6: Object Detection: Challenges
	Slide 7: Detecting a single object
	Slide 8: Detecting a single object
	Slide 9: Detecting a single object
	Slide 10: Detecting a single object
	Slide 11: Detecting a single object
	Slide 12: Detecting a single object
	Slide 13: Detecting Multiple Objects: Sliding Window
	Slide 14: Detecting Multiple Objects: Sliding Window
	Slide 15: Detecting Multiple Objects: Sliding Window
	Slide 16: Detecting Multiple Objects: Sliding Window
	Slide 17: Detecting Multiple Objects: Sliding Window
	Slide 18: Detecting Multiple Objects: Sliding Window
	Slide 19: Detecting Multiple Objects: Sliding Window
	Slide 20: Region Proposals
	Slide 21: R-CNN: Region-Based CNN
	Slide 22: R-CNN: Region-Based CNN
	Slide 23: R-CNN: Region-Based CNN
	Slide 24: R-CNN: Region-Based CNN
	Slide 25: R-CNN: Region-Based CNN
	Slide 26: R-CNN: Region-Based CNN
	Slide 27: R-CNN: Region-Based CNN
	Slide 28: R-CNN: Test-time
	Slide 29: Comparing Boxes: Intersection over Union (IoU)
	Slide 30: Comparing Boxes: Intersection over Union (IoU)
	Slide 31: Comparing Boxes: Intersection over Union (IoU)
	Slide 32: Comparing Boxes: Intersection over Union (IoU)
	Slide 33: Comparing Boxes: Intersection over Union (IoU)
	Slide 34
	Slide 35: Overlapping Boxes: Non-Max Suppression (NMS)
	Slide 36: Overlapping Boxes: Non-Max Suppression (NMS)
	Slide 37: Overlapping Boxes: Non-Max Suppression (NMS)
	Slide 38: Overlapping Boxes: Non-Max Suppression (NMS)
	Slide 39: Overlapping Boxes: Non-Max Suppression (NMS) Problem: Object detectors often output many overlapping detections:
	Slide 40: Evaluating Object Detectors: Mean Average Precision (mAP)
	Slide 41: Evaluating Object Detectors: Mean Average Precision (mAP)
	Slide 42: Evaluating Object Detectors: Mean Average Precision (mAP)
	Slide 43: Evaluating Object Detectors: Mean Average Precision (mAP)
	Slide 44: Evaluating Object Detectors: Mean Average Precision (mAP)
	Slide 45: Evaluating Object Detectors: Mean Average Precision (mAP)
	Slide 46: Evaluating Object Detectors: Mean Average Precision (mAP)
	Slide 47: Evaluating Object Detectors: Mean Average Precision (mAP)
	Slide 48: Evaluating Object Detectors: Mean Average Precision (mAP)
	Slide 50: Evaluating Object Detectors: Mean Average Precision (mAP)
	Slide 52: R-CNN: Region-Based CNN
	Slide 53: R-CNN: Region-Based CNN
	Slide 54: R-CNN: Region-Based CNN
	Slide 55: “Slow” R-CNN Process each region independently
	Slide 56: Fast R-CNN
	Slide 57: Fast R-CNN
	Slide 58: Fast R-CNN
	Slide 59: Fast R-CNN
	Slide 60: Fast R-CNN
	Slide 61: Fast R-CNN
	Slide 62: Fast R-CNN
	Slide 63: Fast R-CNN
	Slide 64: Fast R-CNN
	Slide 65: Fast R-CNN
	Slide 66: Cropping Features: RoI Pool
	Slide 67: Cropping Features: RoI Pool
	Slide 68: Cropping Features: RoI Pool
	Slide 69: Cropping Features: RoI Pool “Snap” to
	Slide 70: Cropping Features: RoI Pool “Snap” to
	Slide 71: Cropping Features: RoI Pool “Snap” to
	Slide 72: Cropping Features: RoI Pool “Snap” to
	Slide 73: Cropping Features: RoI Align
	Slide 74: Cropping Features: RoI Align
	Slide 75: Cropping Features: RoI Align
	Slide 83: Cropping Features: RoI Align
	Slide 84: Fast R-CNN vs “Slow” R-CNN
	Slide 85: Fast R-CNN vs “Slow” R-CNN
	Slide 86: Fast R-CNN vs “Slow” R-CNN
	Slide 87: Fast R-CNN vs “Slow” R-CNN
	Slide 88: Faster R-CNN: Learnable Region Proposals
	Slide 89: Region Proposal Network (RPN)
	Slide 90: Imagine an anchor box of fixed size at each point in the feature map
	Slide 91: Imagine an anchor box of fixed size at each point in the feature map
	Slide 92: Imagine an anchor box of fixed size at each point in the feature map
	Slide 93: Region Proposal Network (RPN)
	Slide 94: Faster R-CNN: Learnable Region Proposals
	Slide 95: Faster R-CNN: Learnable Region Proposals
	Slide 96: Faster R-CNN: Learnable Region Proposals
	Slide 97: Faster R-CNN: Learnable Region Proposals
	Slide 98: Single-Stage Object Detection
	Slide 99: Single-Stage Object Detection
	Slide 100: Object Detection: Lots of variables!
	Slide 101: Summary

