
Deep Learning



So far: Image Classification

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...Vector:

4096

Fully-Connected: 
4096 to 1000



Computer Vision Tasks

Classification
Semantic

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple Objects



Object Detection: Impact of Deep Learning

Figure copyright Ross Girshick, 2015. 
Reproduced with permission.



Last Time: Object Detection Methods
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Recap: Slow R-CNN Training
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”Slow” R-CNN Training
Input Image

Ground-Truth boxes



”Slow” R-CNN Training
Input Image

Ground-Truth boxes

Region Proposals



”Slow” R-CNN Training
Input Image

Categorize each region 
proposal as positive, 
negative, or neutral 
based on overlap with 
ground-truth boxes

GT Boxes

Neutral

Positive

Negative



”Slow” R-CNN Training
Input Image

Crop pixels from 
each positive and 
negative proposal, 
resize to 224 x 224

GT Boxes

Neutral

Positive

Negative



”Slow” R-CNN Training
Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Dog 
Box target:

Class target: Cat 
Box target:

Class target: Dog 
Box target:

Class target: Background 
Box target: None

Run each region through CNN. For positive 
boxes predict class and box offset; for 
negative boxes just predict background class



Fast R-CNN Training

Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Dog 
Box target:

Class target: Cat 
Box target:

Class target: Dog 
Box target:

Class target: Background 
Box target: None

Crop features for each region, use them to 
predict class and box targets per region

Image Features

Backbone 
CNN



Jointly train with 4 losses:

1. RPN classification: anchor box is 
object / not an object

2. RPN regression: predict transform 
from anchor box to proposal box

3. Object classification: classify
proposals as background / object 
class

4. Object regression: predict transform 
from proposal box to object box

Faster R-CNN: Learnable Region Proposals

Anchor -> Region Proposal -> Object Box 

(Stage 1) (Stage 2)

Training each 
stage looks a lot 
like Fast R-CNN:



Faster R-CNN Training: RPN Training

Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Obj 
Box target:

Class target: Obj 
Box target:

Class target: Obj 
Box target:

Class target: Background 
Box target: None

RPN predicts Object / Background for 
each anchor, as well as regresses from 
anchor to object box

Image Features

Backbone 
CNN

RPN gives lots of anchors which 
we classify as pos / neg / neutral 
by matching with ground-truth



Faster R-CNN Training: Stage 2

Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Dog 
Box target:

Class target: Cat 
Box target:

Class target: Dog 
Box target:

Class target: Background 
Box target: None

Crop features for each proposal, use them 
to predict class and box targets per region

Image Features

Backbone 
CNN

Now proposals come from RPN 
rather than selective search, 
but otherwise this works the 
same as Fast R-CNN training



Recap: Fast R-CNN Feature Cropping
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Input Image 
(e.g. 3 x 640 x 480)

CNN

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

Region features 
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Goal: Crop features for 
region proposal, and 
resize to a fixed size for 
downstream processing, 
in a differentiable way

Girshick, “Fast R-CNN”, ICCV 2015.

Cropping Features: RoI Pool
 “Snap” to



Cropping Features: RoI Pool

“Snap” to

Input Image 
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Max-pool within 
each subregion

Region features 
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the 
same size even if input 

regions have different sizes!



Cropping Features: RoI Pool

“Snap” to

Input Image 
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Max-pool within 
each subregion

Region features 
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the 
same size even if input 

regions have different sizes!
Problem: Slight misalignment due to
snapping; different-sized subregions is weird



Cropping Features: RoI
Align

Input Image 
(e.g. 3 x 640 x 480)

CNN

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

No “snapping”!

He et al, “Mask R-CNN”, ICCV 2017

Divide into equal-sized subregions 
(may not be aligned to grid!)



Cropping Features: RoI
Align

Input Image 
(e.g. 3 x 640 x 480)

CNN

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

No “snapping”!

He et al, “Mask R-CNN”, ICCV 2017

Divide into equal-sized subregions 
(may not be aligned to grid!)

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation



Cropping Features: RoI
Align

CNN

Project proposal 
onto features

No “snapping”!

(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Feature fxy for point (x, y) is a

linear combination of features 
at its four neighboring grid cells:

Divide into equal-sized subregions 
(may not be aligned to grid!)

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

Input Image Image features



Cropping Features: RoI
Align

CNN

Project proposal 
onto features

No “snapping”!

Feature fxy for point (x, y) is a

linear combination of features 
at its four neighboring grid cells:

Divide into equal-sized subregions 
(may not be aligned to grid!)

f6,6 f7,6

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

f6,5 f7,5

f6.5,5.8



Cropping Features: RoI
Align

CNN

Project proposal 
onto features

No “snapping”!

Feature fxy for point (x, y) is a

linear combination of features 
at its four neighboring grid cells:

f6.5,5.8 = (f6,5 * 0.5 * 0.2) + (f7,5 * 0.5 * 0.2)
+ (f * 0.5 * 0.8) + (f6,6 7,6

Divide into equal-sized subregions 
(may not be aligned to grid!)

f6,6 f7,6

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

f6,5 f7,5

f6.5,5.8



Cropping Features: RoI
Align

CNN

Project proposal 
onto features

No “snapping”!

Divide into equal-sized subregions 
(may not be aligned to grid!)

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

f6,5 f7,5

6.5,5.8

0.8
f

0.5

f6,6 f7,6

Feature fxy for point (x, y) is a

linear combination of features 
at its four neighboring grid cells:

f6.5,5.8 = (f6,5 * 0.5 * 0.2) + (f7,5 * 0.5 * 0.2)
+ (f * 0.5 * 0.8) + (f6,6 7,6



Cropping Features: RoI
Align

CNN

Project proposal 
onto features

No “snapping”!

Divide into equal-sized subregions 
(may not be aligned to grid!)

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

f6,5 f7,5

f6.5,5.8

0.8

0.5

f7,6f6,6

Feature fxy for point (x, y) is a

linear combination of features 
at its four neighboring grid cells:

f6.5,5.8 = (f6,5 * 0.5 * 0.2) + (f7,5 * 0.5 * 0.2)
+ (f * 0.5 * 0.8) + (f6,6 7,6



Cropping Features: RoI
Align

CNN

Project proposal 
onto features

No “snapping”!

Divide into equal-sized subregions 
(may not be aligned to grid!)

Feature fxy for point (x, y) is a 
linear combination of features 
at its four neighboring grid cells:

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

f6,5 f7,5

0.2 0.5 f6.5,5.8

f6,6 f7,6

f6.5,5.8 = (f6,5 * 0.5 * 0.2) + (f7,5 * 0.5 * 0.2)

6,6 7,6+ (f * 0.5 * 0.8) + (f * 0.5 * 0.8)



Cropping Features: RoI
Align

CNN

Project proposal 
onto features

No “snapping”!

Divide into equal-sized subregions 
(may not be aligned to grid!)

Feature fxy for point (x, y) is a 
linear combination of features 
at its four neighboring grid cells:

f6,6

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

f6,5 f7,5

f6.5,5.8

0.5 f7,6

f6.5,5.8 = (f6,5 * 0.5 * 0.2) + (f7,5 * 0.5 * 0.2)

6,6 7,6+ (f * 0.5 * 0.8) + (f * 0.5 * 0.8)

0.2



Cropping Features: RoI
Align

CNN

Project proposal 
onto features

No “snapping”!

Divide into equal-sized subregions 
(may not be aligned to grid!)

f6,6 f7,6

Feature fxy for point (x, y) is a 
linear combination of features 
at its four neighboring grid cells:

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

f6,5 f7,5

f6.5,5.8

This is differentiable! Upstream gradient for sampled feature will 
flow backward into each of the four nearest-neighbor gridpoints



Cropping Features: RoI
Align

Input Image 
(e.g. 3 x 640 x 480)

CNN

Image features 
(e.g. 512 x 20 x 15)

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

No “snapping”!

Divide into equal-sized subregions 
(may not be aligned to grid!)

Sample features at 
regularly-spaced points 
in each subregion using 
bilinear interpolation

After sampling, max-
pool in each subregion

Region features 
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)



Computer Vision Tasks: Object Detection

Classification Semantic 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

No spatial extent

Object 
Detection

DOG, DOG, CAT

Instance
Segmentation

DOG, DOG, CAT

Multiple ObjectsNo objects, just pixels



Computer Vision Tasks: Semantic Segmentation

Classification

CAT

No spatial extent

Semantic 
Segmentation

Object Instance

Detection Segmentation

DOG, DOG, CAT DOG, DOG, CATGRASS, CAT, TREE, 
SKY

Multiple ObjectsNo objects, just pixels



Semantic Segmentation

Sky

Cow

Grass

Label each pixel in the image 
with a category label

Don’t differentiate instances, 
only care about pixels

Grass

Cat

Sky



Semantic Segmentation Idea: Sliding Window

Full image

Extract 
patch

Classify center 
pixel with CNN

Cow

Grass

Cow

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014



Semantic Segmentation Idea: Sliding Window

Full image

Extract 
patch

Classify center 
pixel with CNN

Cow

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Problem: Very inefficient. Not 
reusing shared features 
between overlapping patches



Semantic Segmentation: Fully Convolutional Network

Input:
3 x H x W

Convolutions: 
D x H x W

Conv Conv Conv Conv

Scores: 
C x H x W

argmax

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Predictions: 
H x W

Design a network as a bunch of convolutional 
layers to make predictions for pixels all at once

Loss function: Per-Pixel cross-entropy



Semantic Segmentation: Fully Convolutional Network

Input:
3 x H x W

Conv Conv Conv Conv

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

argmax

Design a network as a bunch of convolutional 
layers to make predictions for pixels all at once

Problem #1: Effective receptive 
field size is linear in number of 
conv layers: With L 3x3 conv 
layers, receptive field is 1+2L



Semantic Segmentation: Fully Convolutional Network

Input:
3 x H x W

Conv Conv Conv Conv

layers, receptive field is 1+2L

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

downsamples

argmax

Design a network as a bunch of convolutional 
layers to make predictions for pixels all at once

Problem #1: Effective receptive 
field size is linear in number of 
conv layers: With L 3x3 conv

Problem #2: Convolution on 
high res images is expensive.
Recall ResNet stem aggressively



Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network

High-res:
D1 x H/2 x W/2

1

High-res:
D x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4Input:

3 x H x W Predictions: 
H x W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015



Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network

High-res:
D1 x H/2 x W/2

1

High-res:
D x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4Input:

3 x H x W Predictions: 
H x W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided
convolution

Upsampling:
???



In-Network Upsampling: “Unpooling”

1 2

3 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

Input
C x 2 x 2

Output 
C x 4 x 4

Bed of Nails



In-Network Upsampling: “Unpooling”

1 2

3 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Input
C x 2 x 2

Output 
C x 4 x 4

1 2

3 4

Bed of Nails Nearest Neighbor

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

Input
C x 2 x 2

Output 
C x 4 x 4



In-Network Upsampling: Bilinear Interpolation

Input: C x 2 x 2 Output: C x 4 x 4

1 2

3 4

1.00 1.25 1.75 2.00

1.50 1.75 2.25 2.50

2.50 2.75 3.25 3.50

3.00 3.25 3.75 4.00

Use two closest neighbors in x and y 
to construct linear approximations



In-Network Upsampling: Bicubic Interpolation

1 2

3 4

0.68 1.02 1.56 1.89

1.35 1.68 2.23 2.56

2.44 2.77 3.32 3.65

3.11 3.44 3.98 4.32

Input: C x 2 x 2 Output: C x 4 x 4

Use three closest neighbors in x and y to 
construct cubic approximations



In-Network Upsampling: “Max Unpooling”

5 6

7 8

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Max Pooling: Remember 
which position had the max

Max Unpooling: Place into 
remembered positions

1 2

3 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

Rest 
of 

net

Pair each downsampling layer 
with an upsampling layer



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between input 
and filter



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between input 
and filter



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Dot product 
between input 
and filter



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Dot product 
between input 
and filter



Learnable Upsampling: Transposed Convolution

Input: 4 x 4

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Convolution with stride > 1 is “Learnable Downsampling” 
Can we use stride < 1 for “Learnable Upsampling”?

Dot product 
between input 
and filter

Output: 2 x 2



Learnable Upsampling: Transposed Convolution

Output: 4 x 4Input: 2 x 2

3 x 3 convolution transpose, stride 2



Learnable Upsampling: Transposed Convolution

Input: 2 x 2

Weight filter by
input value and
copy to output

3 x 3 convolution transpose, stride 2

Output: 4 x 4



Learnable Upsampling: Transposed Convolution

3 x 3 convolution transpose, stride 2

Filter moves 2 pixels in output
for every 1 pixel in input

Weight filter by
input value and
copy to output

Input: 2 x 2 Output: 4 x 4



3 x 3 convolution transpose, stride 2

Input: 2 x 2

Filter moves 2 pixels in output
for every 1 pixel in input

Weight filter by
input value and
copy to output

Sum where
output overlaps

Output: 4 x 4

Learnable Upsampling: Transposed Convolution



3 x 3 convolution transpose, stride 2

Input: 2 x 2

This gives 5x5 output – need to trim one 
pixel from top and left to give 4x4 output

Weight filter by
input value and
copy to output

Output: 4 x 4

Sum where
output overlaps

Learnable Upsampling: Transposed Convolution



Transposed Convolution: 1D example

a
x

y

z
b

ax

ay

az+ bx

by

bz

Input Filter Output

Output has copies of 
filter weighted by input

Stride 2: Move 2 pixels
output for each pixel in
input

Sum at overlaps



Transposed Convolution: 1D example

a
x

y

z
b

ax

ay

az+ bx

by

bz

Input Filter Output
This has many names:

- Deconvolution (bad)!
- Upconvolution

- Fractionally strided 
convolution
- Backward strided 
convolution
- Transposed Convolution

(best name)



Convolution as Matrix Multiplication (1D Example)
We can express convolution in 
terms of a matrix multiplication

Example: 1D conv, kernel 
size=3, stride=1, padding=1



Convolution as Matrix Multiplication (1D Example)
We can express convolution in 
terms of a matrix multiplication

Example: 1D conv, kernel 
size=3, stride=1, padding=1

Transposed convolution multiplies by 
the transpose of the same matrix:

When stride=1, transposed conv is just a 
regular conv (with different padding rules)



Convolution as Matrix Multiplication (1D Example)
We can express convolution in 
terms of a matrix multiplication

Transposed convolution multiplies by 
the transpose of the same matrix:

Example: 1D conv, kernel 
size=3, stride=2, padding=1



Convolution as Matrix Multiplication (1D Example)
We can express convolution in 
terms of a matrix multiplication

Transposed convolution multiplies by 
the transpose of the same matrix:

Example: 1D conv, kernel 
size=3, stride=2, padding=1



Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network

High-res:
D1 x H/2 x W/2

1

High-res:
D x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015 

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Input:
3 x H x W Predictions: 

H x W

Downsampling:
Pooling, strided
convolution

Upsampling: 
Iinterpolation, 
transposed conv

Loss function: Per-Pixel cross-entropy



Sky

Cow

Grass

Computer Vision Tasks
Object Detection: Detects individual 
object instances, but only gives box

Semantic Segmentation: Gives per-
pixel labels, but merges instances



Things and Stuff

Sky

Cow

Grass

Things: Object categories 
that can be separated into 
object instances
(e.g. cats, cars, person)

Stuff: Object categories 
that cannot be separated 
into instances
(e.g. sky, grass, water, trees)

Grass

Cat

Sky



Sky

Cow

Grass

Computer Vision Tasks
Object Detection: Detects individual 
object instances, but only gives box 
(only things)

Semantic Segmentation: Gives per-
pixel labels, but merges instances 
(both things and stuff)



Computer Vision Tasks: Instance Segmentation

Semantic Object
Segmentation Detection

Instance 
Segmentation

GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT

Classification

CAT

No spatial extent

DOG, DOG, CAT

Multiple ObjectsNo objects, just pixels



Computer Vision Tasks: Instance Segmentation

Instance Segmentation:
Detect all objects in the 
image, and identify the 
pixels that belong to each 
object (only things)

Cow

Cow



Computer Vision Tasks: Instance Segmentation

Instance Segmentation:
Detect all objects in the 
image, and identify the 
pixels that belong to each 
object (only things)

Approach: Perform 
object detection, then 
predict a segmentation 
mask for each object!

Cow

Cow



Object Detection: 
Faster R-CNN

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NeurIPS 2015



Instance Segmentation:
Mask R-CNN

Mask 
Prediction

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN

RoI Align

Classification Scores: C
Box coordinates (per class): 
4 * C

CNN
+RPN

Predict a mask for 
each of C classes: 

C x 28 x 28
He et al, “Mask R-CNN”, ICCV 2017

256 x 14 x 14

Conv Conv

256 x 14 x 14



Mask R-CNN: Example Training Targets



Mask R-CNN: Example Training Targets



Mask R-CNN: Example Training Targets



Mask R-CNN: Example Training Targets



Mask R-CNN: Very Good Results!



Cow

Cow

Sky

Cow

Grass

Instance Segmentation: Separate 
object instances, but only things

Semantic Segmentation: Identify both things 
and stuff, but doesn’t separate instances

Beyond Instance Segmentation



Beyond Instance Segmentation:Panoptic Segmentation

C  o  w       #  1

Grass

Trees

Sky
Label all pixels in 
the image (both 
things and stuff)

For “thing” 
categories also 
separate into 
instances

Kirillov et al, “Panoptic Segmentation”, CVPR 2019
Kirillov et al, “Panoptic Feature Pyramid Networks”, CVPR 2019

C  o  w       #  2



Beyond Instance Segmentation:Panoptic Segmentation

Kirillov et al, “Panoptic Feature Pyramid Networks”, CVPR 2019



Beyond Instance Segmentation: Human Keypoints

Represent the pose of a human 
by locating a set of keypoints

e.g. 17 keypoints:
- Nose
- Left / Right eye
- Left / Right ear
- Left / Right shoulder
- Left / Right elbow
- Left / Right wrist
- Left / Right hip
- Left / Right knee
- Left / Right ankle



Mask R-CNN:
Instance Segmentation

Mask 
Prediction

Keypoint
estimation

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN: 
Keypoint Estimation

Mask 
Prediction

He et al, “Mask R-CNN”, ICCV 2017

Keypoint 
prediction

Keypoint 
estimation



Mask R-CNN: 
Keypoint Estimation

Mask 
Prediction

He et al, “Mask R-CNN”, ICCV 2017

Keypoint 
prediction

Keypoint 
estimation



Mask R-CNN: Keypoints

He et al, “Mask R-CNN”, ICCV 2017

RoI Align Conv…

Classification Scores: C
Box coordinates (per class): 4 * C 
Segmentation mask: C x 28 x 28

CNN
+RPN

256 x 14 x 14
Keypoint masks: 

K x 56 x 56

One mask for each of 
the K different keypoints

Left ankle Right ankle

…

Ground-truth has one “pixel” turned on 
per keypoint. Train with softmax loss



Joint Instance Segmentation and Pose Estimation

He et al, “Mask R-CNN”, ICCV 2017



General Idea: Add Per-
Region “Heads” to 
Faster / Mask R-CNN

Mask 
Prediction

Keypoint 
prediction

Keypoint 
estimation

Per-Region Heads:
Each receives the features after
RoI Pool / RoI Align, makes 
some prediction per-region

He et al, “Mask R-CNN”, ICCV 2017



Dense Captioning: 
Predict a caption 
per region

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional

Caption 
prediction 
(LSTM)

Per-Region Heads:
Each receives the features after
RoI Pool / RoI Align, makes 
some prediction per-region

Localization Networks for Dense Captioning”, CVPR 2016



Dense Captioning

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016



3D Shape Prediction:
Predict a 3D triangle
mesh per region

Mesh 
predictor

Per-Region Heads:
Each receives the features after
RoI Pool / RoI Align, makes 
some prediction per-region

Gkioxari, Malik, and Johnson, “Mesh R-CNN”, ICCV 2019



Summary: Many Computer Vision Tasks

Classification
Semantic 

Segmentation
Object 

Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
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