Deep Learning



So far: Image Classification
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Computer Vision Tasks
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Object Detection: Impact of Deep Learning
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Last Time: Object Detection Methods

“Slow” R-CNN: Run CNN
independently for each region

Bbox || Class

Bbox Class

L
Bbox | | Class Conv Forward each

Cony Net region through
Net ConvNet

Conv

Net EWarped image

ﬁ regions

e : % Regions  of
Inpu g &y =< Interest (Rol)
W2 A ~ from a proposal
‘ B method (~2k)

(224x224)

Fast R-CNN: Apply differentiable
cropping to shared image features

| Boox [ [ Boox | [ Boox | Category ~ and  box
| Class | [ class | | class | transform  per  region

Regions of
Interest (Rols)

=2 = =2
= = =
(@] (9 (9]
from a propos & bCrop + Resizefeatures

method /}‘.‘7 1 5 Image features
T

“Backbone” Run wholeimage
network: - through ConvNet

Per-Region Network




Recap: Slow R-CNN Training

“Slow” R-CNN: Run CNN
independently for each region

Bbox || Class

Bbox Class

L
Bbox | | Class Conv Forward each
Cony Net region through
Net ConvNet
Conv
Net ﬁWarped image

regions (224x224)

Eace = — ~#= Regions of
Inpu g & =< Interest (Rol)
WA - — from a proposal

- 4 - B method (~2k)

transform

per

region



”Slow” R-CNN Training

Input Image

Ground-Truth boxes




”Slow” R-CNN Training

Input Image

Ground-Truth boxes

Region Proposals



”Slow” R-CNN Training

Input Image

Positive

Neutral

Negaﬁve

Categorize each region
proposal as positive,
negative, or neutral
based on overlap with
ground-truth boxes



”Slow” R-CNN Trammg

Input Image

Crop pixels from
each positive and
negative proposal,
resize to 224 x 224

Neutral | Negative




Run each region through CNN. For positive

”SIOW” R CN N Tra in | ng boxes predict class and box offset; for

negative boxes just predict background class

Input Image

Class target: Dog |
Box target: ——> [§

Class target: Cat
Box target: mm——>

Class target: Dog
BOX targetl: mmmy

Class target: Background
Box target: None

Neutral | Negative |




Crop features for each region, use them to

FaSt R-CN N Tra | N | ng predict class and box targets per region
Input Image Image Features |
Backbone | M Class target: Cat
CNN ‘ ki H BOX target: >
WJ Class target: Dog
-~ Box target; —>
— ' 1.1/ Class target: Background
GT Boxes || Positive | inl 5 8

<= Box target: None

Neutral | Negative |



Faster R-CNN: Learnable Region Proposals

Jointly train with 4 losses:

1. RPN classification: anchor box is
object / not an object

2. RPN regression: predict transform
from anchor box to proposal box

3. Object classification: classify
proposals as background / object
class

4. Object regression: predict transform
from proposal box to object box

Anchor -> Region Proposal -> Object Box
(Stage 1) (Stage 2)

proposals/ /
Region Proposal Network " e

Training each CNN
stage looks a lot
like Fast R-CNN:




RPN predicts Object / Background for
each anchor, as well as regresses from

FaSter R‘CNN Tralnlng: RPN Tralnlng anchor to object box

et 117 Class target: Obj

Input Image Image Features ; 1+ Boxtarget: ——> { g
Backbone 11 Class target: Obj
CNN &1 g - H Box target: —m—y
SEER ) [
ZED 11l Class target: Obj
Qﬂ Box target: mm—>

RPN gives lots of anchors which
we classify as pos / neg / neutral | W} Class target: Background
by matching with ground-truth ' Box target: None

GT Boxes | Positive |

Neutral | Negative |




Faster R-CNN Training: Stage 2

Input Image

Image Features

Backbone
CNN e |

‘c.kﬁ

*j%m

Now proposals come from RPN

- rather than selective search,
GT Boxes | Positive | but otherwise this works the

. same as Fast R-CNN trainin
Neutral | Negative | &

Crop features for each proposal, use them
to predict class and box targets per region

CAAT i1l Class target: Dog

- BOX target: m——>

1.1 Class target: Cat

‘A -.‘1

H Box target: mm——>

11l Class target: Dog
Qﬂ Box target: ———>

11 Class target: Background

‘- Box target: None




Recap: Fast R-CNN Feature Cropping

Fast R-CNN: Apply differentiable
cropping to shared image features

Regions
Interest
from a
method

“Backbone”
network:

| Boox | [ Boox | [ Bbox | Category ~ and  box
| Class | [ class | | class | transform  per  region

of
(Rols)

= =2 =
& & &
propos & b Crop + Resizefeatures

m&y Image features
T

Run wholeimage

Per-Region Network




Cropping Features: Rol Pool

Project proposal \ “Snap” to

onto features

N

Goal: Crop features for
region proposal, and
resize to a fixed size for
downstream processing,
in a differentiable way

Input Image
(e.g. 3 x 640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.

Image features
(e.g.512 x 20 x 15)

Region features
(here 512 x 2 x 2;
In practice e.g 512 x7 x7)



Cropping Features: Rol Pool

. grid cells
Project proposal \ “Shap” to

onto features

R L) h 5 NSy
ALY N N TN R

Input Image | Image features
(e.g. 3 x 640 x 480) (e.g.512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.

Divide into 2x2
grid of (roughly)
equal subregions

Max-pool within
each subregion

v

Region features
(here 512 x 2 x 2;
In practicee.g 512 x7x7)

Region features always the
same size even if input
regions have different sizes!



Cropping Features: Rol Pool Divide into 2x2
grid of (roughly)

. grid cells :
Project proposal \ “Snap” to equal subregions
onto features
| Max-pool within
each subregion

v

Region features
G (here 512 x 2 x 2;
: In practice e.g 512 x7 x 7)

A A I 2 AL S NN
AR ) W Vg ¥ NRER \1: !

Input Image Image features

(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Region features always the
Problem: Slight misalignment due to same size even if input

Girshick,“Fast R-CNN"), ICCV 2015 snapping; different-sized subregions is weird ~ egions have different sizes!



Divide into equal-sized subregions

Croppi ng Features: Rol (may not be aligned to grid!)

. « . ”|
Align Project proposal \No snapping”!

onto features

Image features
(e.g. 3 x 640 x 480) (e.g.512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017



Divide into equal-sized subregions

Croppi ng Features: Rol (may not be aligned to grid!)

. No “sn ing”| Sample features at
A||gn Project proposal \ © shapping P

onto features

regularly-spaced points
in each subregion using
bilinear interpolation

o0 |0
oo 00
o0 | 00
o0 | 00

Image features
(e.g. 3 x 640 x 480) (e.g.512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017



Divide into equal-sized subregions

Croppi Ng Features: Rol (may not be aligned to grid!)
A|| N Project proposal \NO “snapping”!  Sample features at

onto features regularly-spaced points

in each subregion using
_ bilinear interpolation
\ | aa lla. | o /
Tt A o ®
CNN S S
= A o
SRR e ® ®
Input Image Image features
(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Feature f,, for point (x, y) is a

linear combination of features
at its four neighboring grid cells:



Cropping Features: Rol

ffcy:Z

1,7=1

Project proposal
onto features

Divide into equal-sized subregions
(may not be aligned to grid!)

\No “snapping”! Sample features at
regularly-spaced points

in each subregion using
bilinear interpolation
|
oLl L // fe,5 f75
i aIP% o O
6.5,5.8
A
E AR
6,6 7,
0,1 — |z — z;]) max(0,1 — |y — y;]) °

Feature f,, for point (x, y) isa
linear combination of features
at its four neighboring grid cells:



Divide into equal-sized subregions

Croppi ng Features: Rol (may not be aligned to grid!)

" u . ”|
All n Project proposal \NO snapping”!  Sample features at |
regularly-spaced points

onto features

in each subregion using
_ bilinear interpolation
[T I
oLl L // fe,5 f75
AT i aIP% o O
- . 6.5,5.8
' AN M N BRS¢ ’/: \ f . .f
6,6 7,
Jaoy = Z’ij:l fi,j max(0,1 — |z — x;|) max(0,1 — |y — y;]) ' 6
foooo=(foc* 0.5 %0.2) + (f5 * 0.5 * 0.2) Feature f,, for point (x, y) isa

linear combination of features
at its four neighboring grid cells:

+ (f6’6 *0.5*0.8) + (f7’6



Divide into equal-sized subregions

Croppi ng Features: Rol (may not be aligned to grid!)

" u . ”|
All n Project proposal \NO snapping”!  Sample features at |
regularly-spaced points

onto features

in each subregion using
_ bilinear interpolation
N |
[T sy | s
CNN | L]
| 0.8 £
6.5,5.8
2 6,6 7,6
fzr:y — Zi’j:IlTlaX(O, 1 — |$ — Xy )"max(O, 1 — |y — yﬁl . ' .
f6.5,5.8 _ (f6,5 * 0.5 % 0.2) + (f7’5 *0.5 * 0.2) Feature f,, for point (x, y) isa

linear combination of features
at its four neighboring grid cells:

+ (f6’6 *0.5*0.8) + (f7’6



Divide into equal-sized subregions

Croppi ng Features: Rol (may not be aligned to grid!)

" u . ”|
All n Project proposal \NO snapping”!  Sample features at |
regularly-spaced points

onto features

in each subregion using
_ bilinear interpolation
e |
oLl L // fe,s‘
| CNN S S
2 6,6
fzr:y — Zi’j:IlTlaX(O, 1 — |$ — Xy )"max(O, 1 — |y — yﬁl . ' .
f6.5,5.8 _ (f6,5 *0.5*0.2) + (f7’5 * 0.5 % 0.2) Feature f,, for point (x, y) isa

linear combination of features
at its four neighboring grid cells:

+ (f6’6 *0.5*0.8) + (f7’6



Divide into equal-sized subregions

Croppi ng Features: Rol (may not be aligned to grid!)

" u . ”|
All n Project proposal \NO snapping”!  Sample features at |
regularly-spaced points

onto features

in each subregion using
_ bilinear interpolation
T |
[T R sy | s
CNN | o |y
- | . 0. 05 6558
2 6,6 7,6
fzr:y — Zi’j:IlTlaX(O, 1 — |$ — Ly )"max(O, 1 — |y - yﬁl . )
f6.5,5.8 _ (f6,5 * 0.5 * 0.2) + (f7’5 * 0.5 * 0.2) Feature f,, for point (x, y) is a

linear combination of features
at its four neighboring grid cells:

+(f o *0.5%0.8) +(f,  * 0.5 * 0.8)



Divide into equal-sized subregions

Croppi ng Features: Rol (may not be aligned to grid!)

" u . ”|
All n Project proposal \NO snapping”!  Sample features at |
regularly-spaced points

onto features

in each subregion using
_ bilinear interpolation
[T |
oLl L // fe,s‘ .f7,5
CNN | L]
| 6.5,5.8
| R A AN " @o0.2 ;
2 6,6 7,6
fzr:y — Zi’j:IlTlaX(O, 1 — |$ — Xy )"max(O, 1 — |y — yﬁl : .
f6.5,5.8 _ (f6,5 *0.5 % 0.2) + (f7’5 * 0.5 * 0.2) Feature f,, for point (x, y) is a

linear combination of features
at its four neighboring grid cells:

+(f o * 0.5*0.8) + (f, ; * 0.5 * 0.8)



Divide into equal-sized subregions

Croppi Ng Features: Rol (may not be aligned to grid!)
A|| N Project proposal \NO “snapping”!  Sample features at

onto features regularly-spaced points

in each subregion using
, bilinear interpolation
E T |
[T sy | s
CNN S S
= ! ¢ 6.5,5.8
2 6,6 7,6
Jry = Zi,jzl Jij max(0,1 — |z — z;]) max(0,1 — |y — yj|)

Feature f,, for point (x, y) is a
linear combination of features
at its four neighboring grid cells:

This is differentiable! Upstream gradient for sampled feature will
flow backward into each of the four nearest-neighbor gridpoints



Divide into equal-sized subregions

Croppi Ng Features: Rol (may not be aligned to grid!)
A|| N Project proposal \NO “snapping”!  Sample features at

onto features .regularly—space.d pOlf.VCS
in each subregion using

bilinear interpolation

o0 o0 After sampling, max-
o0 |00 pool in each subregion
CNN —
o0 |00
L o0 (oo ’

Input Image | Image features
(e.g. 3 x 640 x 480) (e.g.512 x 20 x 15)

Region features
(here 512 x 2 x 2;
In practice e.g 512 x7 x 7)

He et al, “Mask R-CNN”, ICCV 2017



Computer Vision Tasks: Object Detection

Object
Detection

\—

Y
No objects, just pixels Multiple Objects



Computer Vision Tasks: Semantic Segmentation

Semantic
Segmentation

GRASS, , TREE,

W SKY RS

Y Y
No objects, just pixels Multiple Objects



Semantic Segmentation

Label each pixel in the image
with a category label

Don’t differentiate instances,
only care about pixels




Semantic Segmentation Idea: Sliding Window

Extract  Classify center
patch pixel with CNN

Full image

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014



Semantic Segmentation Idea: Sliding Window

Extract  Classify center
patch pixel with CNN

Problem: Very inefficient. Not
reusing shared features
betwee n Ove rla p p| ng patch es Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014



Semantic Segmentation: Fully Convolutional Network

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once

“ & Conv Conv

y

Conv

o

~

Convolutions:
DxHxW

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Conv

Scores:

argmax

Predictions:
CxHxW Hx W

Loss function: Per-Pixel cross-entropy



Semantic Segmentation: Fully Convolutional Network

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once

A 4 4 A

w Conv Conv Conv Conv argmax

Input:  Problem #1: Effective receptive
3xHxW fieldsizeislinear in number of
conv layers: With L 3x3 conv
layers, receptive field is 1+2L

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015



Semantic Segmentation: Fully Convolutional Network

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once

A 4 4 A

“ Conv Conv Conv Conv argmax

Input:  Problem #1: Effective receptive problem #2: Convolution on

conv layers: With L 3x3 conv Recall ResNet stem aggressively
layers, receptive field is 1+2L downsamples

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015



Semantic Segmentation: Fully Convolutional Network

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network

Med-res: Med-res:
D,x H/AXxW/4  D,xH/4x W[4/~

Low-res:

Input: -
- IF-)I W High-res: Dsx H/4 x W/4 High-res: Predictions:
Dix H/2 x W/2 D, x H/2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015



Semantic Segmentation: Fully Convolutional Network

Design network as a bunch of convolutional layers, with

Downsampling: : L Upsampling:
Pooling, strided downsampling and upsampling inside the network 525
convolution Med-res: Med-res:

D,x H/AXxW/4  D,xH/4x W[4/~

Low-res:

Input: -
- IF-)I W High-res: Dsx H/4 x W/4 High-res: Predictions:
Dix H/2 x W/2 D, x H/2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015



In-Network Upsampling: “Unpooling”

Bed of Nails
110120
1|2 0({0]J0|O0
314 30140
0({0]J0|O0
Input Output

Cx2x2 Cx4x4



In-Network Upsampling: “Unpooling”

Bed of Nails Nearest Neighbor
110120
112 0{0]J0|0O 112
314 3/014]|0 3|14
0{0J0|0
Input Output Input Output

Cx2x2 Cx4x4 Cx2x2 Cx4x4



In-Network Upsampling: Bilinear Interpolation

1.00

1.25(1.75|2.00

1.50

1.75(2.25|2.50

1 2
3 4
Input: Cx 2 x 2

2.50

2.7513.25(3.50

3.00

3.2513.7514.00

Output: Cx4 x4

fey = fiymax(0,1— |z —i)max(0,1 =y —j) i€ {|z|—1,...,[2] + 1)

1,

Use two closest neighborsin x andy
to construct linear approximations

jE{LyJ—l,...,

Y| -

_1}



In-Network Upsampling: Bicubic Interpolation

0.6811.02]1.56(1.89

1 2 1.35| 1.68 | 2.23 | 2.56

3 4 2.4412.77(3.32|3.65

3.1113.44|3.98(4.32

Input: Cx 2 x 2 Output: Cx4 x4

Use three closest neighborsin x and y to
construct cubic approximations



In-Network Upsampling: “Max Unpooling”

Max Pooling: Remember
which position had the max

112163
35|21 5] 6
112121 718
713148
SNy

—>

Max Unpooling: Place into
remembered positions

0(012]|0
Re:t 1|2 0(110]0
ol —> >
ot 34 ojojo]oO
301014

Pair each downsampling layer
with an upsampling layer

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x4 Output: 4 x4



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Dot product
between input
and filter

Input: 4 x4 Output: 4 x4



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Dot product
between input
and filter

Input: 4 x4 Output: 4 x4



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x4 Output: 2 x 2



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Dot product
between input
and filter

Input: 4 x4 Output: 2x 2



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Dot product
between input
and filter

Input: 4 x4 Output: 2x 2



Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Convolution with stride > 1 is “Learnable Downsampling”
Can we use stride < 1 for “Learnable Upsampling”?

»

Dot product
between input
and filter

Input: 4 x4 Output: 2x 2



Learnable Upsampling: Transposed Convolution

3 x 3 convolution transpose, stride 2

Input: 2 x 2 Output: 4 x4



Learnable Upsampling: Transposed Convolution

3 x 3 convolution transpose, stride 2

>

Weight filter by
input value and

copy to output

Input: 2 x 2 Output: 4 x4



Learnable Upsampling: Transposed Convolution

3 x 3 convolution transpose, stride 2

Filter moves 2 pixels in output

for every 1 pixel in input

>

Weight filter by |
input value and

copy to output

Input: 2 x 2 Output: 4 x4



Learnable Upsampling: Transposed Convolution

. . Sum where
3 x 3 convolution transpose, stride 2 output overlaps

Filter moves 2 pixels in output
for every 1 pixel in input

>

Weight filter by
input value and
copy to output

Input: 2 x 2 Output: 4 x4



Learnable Upsampling: Transposed Convolution

. . Sum where
3 x 3 convolution transpose, stride 2 output overlaps

This gives 5x5 output — need to trim one
pixel from top and left to give 4x4 output

Weight filter by —
input value and
copy to output

Input: 2 x 2 Output: 4 x4



Transposed Convolution: 1D example

Input

Filter

7
T

AVA

Output

dX

ay

dz+

bx

bz

Output has copies of
filter weighted by input

Stride 2: Move 2 pixels
output for each pixel in
input

Sum at overlaps



Transposed Convolution: 1D example

Input

Filter

7
T

AVA

Output

dX

ay

az+ b_X
by
bz

This has many names:

- Deconvolution (bad)!

- Upconvolution

- Fractionally strided

convolution

- Backward strided

convolution

- Transposed Convolution
(best name)
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Convolution as Matrix Multiplication (1D Example)

We can express convolution in
terms of a matrix multiplication

rxad= Xda

oo 8 <

0
zr 0 0 0| |a  ay+bz
y = 0 0] (bf Jax+by+cz
xr y x 0| |e| |br+cy+dz
0 =z y x| |d - cx+dy
0

Example: 1D conv, kernel
size=3, stride=1, padding=1



oo O R

Convolution as Matrix Multiplication (1D Example)

We can express convolution in
terms of a matrix multiplication

rxad= Xda

SO 8 KT 8
S 8 O
8 O O O

oo 8 <
<8 OO

Example: 1D conv, kernel
size=3, stride=1, padding=1

OQ O O Q9 O

ay + bz
ax + by + cz
bx 4+ cy + dz

cr + dy

Transposed convolution multiplies by
the transpose of the same matrix:

(s e R e R

Sone 8§ o

oneg 8§ © O

N OO

—

?xl g=X"1g

ax
ay + bx
az + by + cx
bz + cy + dzx
cz + dy
dz

When stride=1, transposed conv is just a
regular conv (with different padding rules)




Convolution as Matrix Multiplication (1D Example)

We can express convolution in Transposed convolution multiplies by
terms of a matrix multiplication the transpose of the same matrix:
rxd= Xa T+ G=2A"d

a:y:r:OOO]

| ay+bz
0 0 z v = O -

bx + cy + dz

O QUL O o O

Example: 1D conv, kernel
size=3, stride=2, padding=1




Convolution as Matrix Multiplication (1D Example)

We can express convolution in Transposed convolution multiplies by
terms of a matrix multiplication the transpose of the same matrix:
Trd=Xa I+ d=X"a
0 x 0] - axr |
" y 0 ay
r y x 0 0 O] |bf ay + bz “ & [a]: az + bx
0 0 = y =x 0] c _[bx—l—cy+dz] 0 wyi |b by
d 0 =z bz
0] 0 0 0

Example: 1D conv, kernel
size=3, stride=2, padding=1




Semantic Segmentation: Fully Convolutional Network

Design network as a bunch of convolutional layers, with  Upsampling:

Downsampling: | ling and ling inside the network i lati
pooling, strided ownsampling and upsampling inside the networ tmterpo atcljon,

. ransposed conv
convolution Med-res: Med-res: P

D,x H/4xW/4 D,xH/4xW/4, 7~

Low-res:

Input: -
- IF-)I W High-res: Dsx H/4 x W/4 High-res: Predictions:
Dix H/2 x W/2 D, x H/2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015 LOSS fu n Ct i O n : Pe r_ P ixe | C rOSS_e nt ro py

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015



Computer Vision Tasks

Object Detection: Detects individual Semantic Segmentation: Gives per-
object instances, but only gives box pixel labels, but merges instances




Things and Stuff

Things: Object categories
that can be separated into
object instances

(e.g. cats, cars, person)

Stuff: Object categories

that cannot be separated
Into instances

(e.g. sky, grass, water, trees)




Computer Vision Tasks

Object Detection: Detects individual Semantic Segmentation: Gives per-
object instances, but only gives box pixel labels, but merges instances

(only things) (both things and stuff)




Computer Vision Tasks: Instance Segmentation

Instance
Segmentation

GRASS, CAT, TREE, DOG, DOG, CAT DOG, DOG, CAT
R e

No objects, just pixels Multiple Objects



Computer Vision Tasks: Instance Segmentation

Instance Segmentation:
Detect all objects in the
image, and identify the
pixels that belong to each
object (only things)




Computer Vision Tasks: Instance Segmentation

Instance Segmentation:
Detect all objects in the
image, and identify the
pixels that belong to each
object (only things)

Approach: Perform
object detection, then
predict a segmentation
mask for each object!




Object Detection:
Faster R-CNN

proposals
Object / /

Detection Region Proposal Ne

twork' -

CNN
: 4 /
DOG, DOG, CAT ——rrT 77

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NeurIPS 2015




Instance Segmentation:

Mask R-CNN
=

proposals
Instance

Segmentation

Region Proposal Network /3

CNN
4 /

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN

Classification Scores: C
> Box coordinates (per class):
4*C
/|

A A y

////

///; // > >

/;;/ Rol Align| [[ Conv| (7} Conv

/

256x14x14 256x14x14

Predict a mask for
each of C classes:
Cx28x28

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN: Example Training Targets




Mask R-CNN: Example Training Targets




Mask R-CNN: Example Training Targets




Mask R-CNN: Example Training Targets




Mask R-CNN: Very Good Results!

person1.00

motorcycle1.00,

motorcycle1.0d

bottle. 99




Beyond Instance Segmentation

Instance Segmentation: Separate Semantic Segmentation: Identify both things
object instances, but only things and stuff, but doesn’t separate instances




Beyond Instance Segmentation:Panoptic Segmentation

Label all pixels in
the image (both
things and stuff)

For “thing”
categories also
separate into
Instances

Kirillov et al, “Panoptic Segmentation”, CVPR 2019
Kirillov et al, “Panoptic Feature Pyramid Networks”, CVPR 2019



Beyond Instance Segmentation:Panoptic Segmentation

Kirillov et al, “Panoptic Feature Pyramid Networks”, CVPR 2019




Beyond Instance Segmentation: Human Keypoints

Represent the pose of a human
by locating a set of keypoints

e.g. 17 keypoints:

- Nose

- Left / Right eye

- Left / Right ear

- Left / Right shoulder
- Left / Right elbow

- Left / Right wrist

- Left / Right hip

- Left / Right knee

- Left / Right ankle




Mask R-CNN:
Instance Segmentation o

proposals/
Region Proposal Network
Instance ) )
Segmentation estimation feature map

CNN
4 /

DOG, DOG, CAT
He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN:
Keypoint Estimation =

proposeV /

Region Proposal Network

Keypoint
estimation feature map

CNN
4 /

—a—rr =5 2

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN:
Keypoint Estimation =

proposeV /

Region Proposal Network

Keypoint
estimation feature map

CNN
4 /

—a—rr =5 2

He et al, “Mask R-CNN”, ICCV 2017



Classification Scores: C

I\/laSk R-CNN: Keypoints —— Box coordinates (per class): 4 * C

Segmentation mask: Cx 28 x 28

One mask for each of
the K different keypoints

M
! l // 7 Left ankle Right ankle
> ¥ //
CNN i '
RPN ' /Rol Align| (] Conv...
4 Keypoint masks:
256 x 14 x 14 Kx 56 x56

Ground-truth has one “pixel” turned on
per keypoint. Train with softmax loss

He et al, “Mask R-CNN”, ICCV 2017



Joint Instance Segmentation and Pose Estimation

He et al, “Mask R-CNN”, ICCV 2017



General Idea: Add Per-
Region “Heads” to
Faster / Mask R-CNN

pooling

Per-Region Heads:
Each receives the features after
Rol Pool / Rol Align, makes
some prediction per-region

proposiﬁ>//// //////
Region Proposal Network" i

Object Instance Ke.yp0|'nt

Detection Segmentation estimation feature map

CNN
y /

DOG, DOG, CAT DOG, DOG, CAT
He et al, “Mask R-CNN”, ICCV 2017




Dense Captioning:
Predict a caption
per region

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional
Localization Networks for Dense Captioning”, CVPR 2016

=

pooling

Per-Region Heads:
Each receives the features after
Rol Pool / Rol Align, makes
some prediction per-region

proposif;//// ///////
Region Proposal Network |

CNN
y /




Dense Captioning

people are in the background man wearing a black shirt

light on the wall sign on the wall man wearing a white shirt red shirt on a man jelephant is standing

large green

trees
man with
black hair
man sitting _
on a table white laptop elephant

on a table

man wearing man sitting
blue jeans on a table
woman ball is
wearing a white w|
blue jeans on leslc ahirt

the ground ground is

chair is brown | icipje

shadow on
elephant is standing the ground

man sitting on a bench man wearing black shirt

: ground is brown
floor is brown

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016

elephant is brown

roof of a
building

green trees
in the
background

qu of an
elephant

leg of an
elephant



3D Shape Prediction:
Predict a 3D triangle
mesh per region

Gkioxari, Malik, and Johnson, “Mesh R-CNN”, ICCV 2019

=

pooling

Per-Region Heads:
Each receives the features after
Rol Pool / Rol Align, makes
some prediction per-region

proposif;//// ///////
Region Proposal Network |

CNN
y /




Summary: Many Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

——— / =
= = =

CAT GRASS, CAT, TREE, DOG, DOG, CAT 0G, DOG, CAT

“ RN SKY AR Y

Y Y Y
No spatial extent  No objects, just pixels Multiple Objects
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