
Deep Learning

So far: Image Classification

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...Vector:

4096

Fully-Connected:
4096 to 1000

Computer Vision Tasks

Classification
Semantic

Segmentation
Object

Detection

Instance
Segmentation

CAT GRASS, CAT, TREE,
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple Objects

Object Detection: Impact of Deep Learning

Figure copyright Ross Girshick, 2015.
Reproduced with permission.

Last Time: Object Detection Methods

Input
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped
regions

image
(224x224)

Regions
Interest
from a

of
(RoI)

proposal

method (~2k)

Forward
region
ConvNet

each
through

Bbox
Bbox

Bbox

Fast R-CNN: Apply differentiable
cropping to shared image features

“Slow” R-CNN: Run CNN
independently for each region

ConvNet

Input image

Per-Region Network

Crop + Resizefeatures

Image features

Run wholeimage
through ConvNet

VGG,

“Backbone”
network:
AlexNet,
ResNet, etc

of
(RoIs)
proposal

Regions
Interest
from a
method

C
N

N

C
N

N

C
N

N

Bbox

Class

Bbox

Class

Bbox

Class

Category and box
transform per region

Recap: Slow R-CNN Training

Input
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped
regions

image
(224x224)

Regions
Interest
from a

of
(RoI)

proposal

method (~2k)

Forward
region
ConvNet

each
through

Bbox
Bbox

Bbox

Fast R-CNN: Apply differentiable
cropping to shared image features

Regions of Per-Region Network
Interest (RoIs)

from a proposal Crop + Resizefeatures
method Image features

“Backbone” Run wholeimage
network: through ConvNet
AlexNet, VGG,
ResNet, etc ConvNet

Input image

“Slow” R-CNN: Run CNN
independently for each region

C
N

N

C
N

N

C
N

N

Bbox Bbox Bbox Category and box

Class Class Class transform per region

”Slow” R-CNN Training
Input Image

Ground-Truth boxes

”Slow” R-CNN Training
Input Image

Ground-Truth boxes

Region Proposals

”Slow” R-CNN Training
Input Image

Categorize each region
proposal as positive,
negative, or neutral
based on overlap with
ground-truth boxes

GT Boxes

Neutral

Positive

Negative

”Slow” R-CNN Training
Input Image

Crop pixels from
each positive and
negative proposal,
resize to 224 x 224

GT Boxes

Neutral

Positive

Negative

”Slow” R-CNN Training
Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Dog
Box target:

Class target: Cat
Box target:

Class target: Dog
Box target:

Class target: Background
Box target: None

Run each region through CNN. For positive
boxes predict class and box offset; for
negative boxes just predict background class

Fast R-CNN Training

Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Dog
Box target:

Class target: Cat
Box target:

Class target: Dog
Box target:

Class target: Background
Box target: None

Crop features for each region, use them to
predict class and box targets per region

Image Features

Backbone
CNN

Jointly train with 4 losses:

1. RPN classification: anchor box is
object / not an object

2. RPN regression: predict transform
from anchor box to proposal box

3. Object classification: classify
proposals as background / object
class

4. Object regression: predict transform
from proposal box to object box

Faster R-CNN: Learnable Region Proposals

Anchor -> Region Proposal -> Object Box

(Stage 1) (Stage 2)

Training each
stage looks a lot
like Fast R-CNN:

Faster R-CNN Training: RPN Training

Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Obj
Box target:

Class target: Obj
Box target:

Class target: Obj
Box target:

Class target: Background
Box target: None

RPN predicts Object / Background for
each anchor, as well as regresses from
anchor to object box

Image Features

Backbone
CNN

RPN gives lots of anchors which
we classify as pos / neg / neutral
by matching with ground-truth

Faster R-CNN Training: Stage 2

Input Image

GT Boxes

Neutral

Positive

Negative

Class target: Dog
Box target:

Class target: Cat
Box target:

Class target: Dog
Box target:

Class target: Background
Box target: None

Crop features for each proposal, use them
to predict class and box targets per region

Image Features

Backbone
CNN

Now proposals come from RPN
rather than selective search,
but otherwise this works the
same as Fast R-CNN training

Recap: Fast R-CNN Feature Cropping

l

“Slow” R-CNN: Run CNN
independently for each region

Bbox Class
Bbox Class

Bbox Class
Conv Forward each

Conv Net region through

Conv Net ConvNet

Net Warped image

regions (224x224)

Regions of
Input Interest (RoI)
image from a proposa

method (~2k)

Fast R-CNN: Apply differentiable
cropping to shared image features

ConvNet

Input image

Per-Region Network

Crop + Resizefeatures

Image features

Run wholeimage
through ConvNet

VGG,

“Backbone”
network:
AlexNet,
ResNet, etc

of
(RoIs)
proposal

Regions
Interest
from a
method

C
N

N

C
N

N

C
N

N

Bbox

Class

Bbox

Class

Bbox

Class

Category and box
transform per region

Input Image
(e.g. 3 x 640 x 480)

CNN

Image features
(e.g. 512 x 20 x 15)

Project proposal
onto features

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Goal: Crop features for
region proposal, and
resize to a fixed size for
downstream processing,
in a differentiable way

Girshick, “Fast R-CNN”, ICCV 2015.

Cropping Features: RoI Pool
 “Snap” to

Cropping Features: RoI Pool

“Snap” to

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features
(e.g. 512 x 20 x 15)

Project proposal
onto features

grid cells

Divide into 2x2
grid of (roughly)
equal subregions

Max-pool within
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the
same size even if input

regions have different sizes!

Cropping Features: RoI Pool

“Snap” to

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Image features
(e.g. 512 x 20 x 15)

Project proposal
onto features

grid cells

Divide into 2x2
grid of (roughly)
equal subregions

Max-pool within
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the
same size even if input

regions have different sizes!
Problem: Slight misalignment due to
snapping; different-sized subregions is weird

Cropping Features: RoI
Align

Input Image
(e.g. 3 x 640 x 480)

CNN

Image features
(e.g. 512 x 20 x 15)

Project proposal
onto features

No “snapping”!

He et al, “Mask R-CNN”, ICCV 2017

Divide into equal-sized subregions
(may not be aligned to grid!)

Cropping Features: RoI
Align

Input Image
(e.g. 3 x 640 x 480)

CNN

Image features
(e.g. 512 x 20 x 15)

Project proposal
onto features

No “snapping”!

He et al, “Mask R-CNN”, ICCV 2017

Divide into equal-sized subregions
(may not be aligned to grid!)

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

Cropping Features: RoI
Align

CNN

Project proposal
onto features

No “snapping”!

(e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15) Feature fxy for point (x, y) is a

linear combination of features
at its four neighboring grid cells:

Divide into equal-sized subregions
(may not be aligned to grid!)

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

Input Image Image features

Cropping Features: RoI
Align

CNN

Project proposal
onto features

No “snapping”!

Feature fxy for point (x, y) is a

linear combination of features
at its four neighboring grid cells:

Divide into equal-sized subregions
(may not be aligned to grid!)

f6,6 f7,6

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

f6,5 f7,5

f6.5,5.8

Cropping Features: RoI
Align

CNN

Project proposal
onto features

No “snapping”!

Feature fxy for point (x, y) is a

linear combination of features
at its four neighboring grid cells:

f6.5,5.8 = (f6,5 * 0.5 * 0.2) + (f7,5 * 0.5 * 0.2)
+ (f * 0.5 * 0.8) + (f6,6 7,6

Divide into equal-sized subregions
(may not be aligned to grid!)

f6,6 f7,6

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

f6,5 f7,5

f6.5,5.8

Cropping Features: RoI
Align

CNN

Project proposal
onto features

No “snapping”!

Divide into equal-sized subregions
(may not be aligned to grid!)

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

f6,5 f7,5

6.5,5.8

0.8
f

0.5

f6,6 f7,6

Feature fxy for point (x, y) is a

linear combination of features
at its four neighboring grid cells:

f6.5,5.8 = (f6,5 * 0.5 * 0.2) + (f7,5 * 0.5 * 0.2)
+ (f * 0.5 * 0.8) + (f6,6 7,6

Cropping Features: RoI
Align

CNN

Project proposal
onto features

No “snapping”!

Divide into equal-sized subregions
(may not be aligned to grid!)

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

f6,5 f7,5

f6.5,5.8

0.8

0.5

f7,6f6,6

Feature fxy for point (x, y) is a

linear combination of features
at its four neighboring grid cells:

f6.5,5.8 = (f6,5 * 0.5 * 0.2) + (f7,5 * 0.5 * 0.2)
+ (f * 0.5 * 0.8) + (f6,6 7,6

Cropping Features: RoI
Align

CNN

Project proposal
onto features

No “snapping”!

Divide into equal-sized subregions
(may not be aligned to grid!)

Feature fxy for point (x, y) is a
linear combination of features
at its four neighboring grid cells:

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

f6,5 f7,5

0.2 0.5 f6.5,5.8

f6,6 f7,6

f6.5,5.8 = (f6,5 * 0.5 * 0.2) + (f7,5 * 0.5 * 0.2)

6,6 7,6+ (f * 0.5 * 0.8) + (f * 0.5 * 0.8)

Cropping Features: RoI
Align

CNN

Project proposal
onto features

No “snapping”!

Divide into equal-sized subregions
(may not be aligned to grid!)

Feature fxy for point (x, y) is a
linear combination of features
at its four neighboring grid cells:

f6,6

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

f6,5 f7,5

f6.5,5.8

0.5 f7,6

f6.5,5.8 = (f6,5 * 0.5 * 0.2) + (f7,5 * 0.5 * 0.2)

6,6 7,6+ (f * 0.5 * 0.8) + (f * 0.5 * 0.8)

0.2

Cropping Features: RoI
Align

CNN

Project proposal
onto features

No “snapping”!

Divide into equal-sized subregions
(may not be aligned to grid!)

f6,6 f7,6

Feature fxy for point (x, y) is a
linear combination of features
at its four neighboring grid cells:

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

f6,5 f7,5

f6.5,5.8

This is differentiable! Upstream gradient for sampled feature will
flow backward into each of the four nearest-neighbor gridpoints

Cropping Features: RoI
Align

Input Image
(e.g. 3 x 640 x 480)

CNN

Image features
(e.g. 512 x 20 x 15)

Project proposal
onto features

He et al, “Mask R-CNN”, ICCV 2017

No “snapping”!

Divide into equal-sized subregions
(may not be aligned to grid!)

Sample features at
regularly-spaced points
in each subregion using
bilinear interpolation

After sampling, max-
pool in each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Computer Vision Tasks: Object Detection

Classification Semantic
Segmentation

CAT GRASS, CAT, TREE,
SKY

No spatial extent

Object
Detection

DOG, DOG, CAT

Instance
Segmentation

DOG, DOG, CAT

Multiple ObjectsNo objects, just pixels

Computer Vision Tasks: Semantic Segmentation

Classification

CAT

No spatial extent

Semantic
Segmentation

Object Instance

Detection Segmentation

DOG, DOG, CAT DOG, DOG, CATGRASS, CAT, TREE,
SKY

Multiple ObjectsNo objects, just pixels

Semantic Segmentation

Sky

Cow

Grass

Label each pixel in the image
with a category label

Don’t differentiate instances,
only care about pixels

Grass

Cat

Sky

Semantic Segmentation Idea: Sliding Window

Full image

Extract
patch

Classify center
pixel with CNN

Cow

Grass

Cow

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Semantic Segmentation Idea: Sliding Window

Full image

Extract
patch

Classify center
pixel with CNN

Cow

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Problem: Very inefficient. Not
reusing shared features
between overlapping patches

Semantic Segmentation: Fully Convolutional Network

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Predictions:
H x W

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once

Loss function: Per-Pixel cross-entropy

Semantic Segmentation: Fully Convolutional Network

Input:
3 x H x W

Conv Conv Conv Conv

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

argmax

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once

Problem #1: Effective receptive
field size is linear in number of
conv layers: With L 3x3 conv
layers, receptive field is 1+2L

Semantic Segmentation: Fully Convolutional Network

Input:
3 x H x W

Conv Conv Conv Conv

layers, receptive field is 1+2L

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

downsamples

argmax

Design a network as a bunch of convolutional
layers to make predictions for pixels all at once

Problem #1: Effective receptive
field size is linear in number of
conv layers: With L 3x3 conv

Problem #2: Convolution on
high res images is expensive.
Recall ResNet stem aggressively

Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network

High-res:
D1 x H/2 x W/2

1

High-res:
D x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4Input:

3 x H x W Predictions:
H x W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network

High-res:
D1 x H/2 x W/2

1

High-res:
D x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4Input:

3 x H x W Predictions:
H x W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided
convolution

Upsampling:
???

In-Network Upsampling: “Unpooling”

1 2

3 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

Input
C x 2 x 2

Output
C x 4 x 4

Bed of Nails

In-Network Upsampling: “Unpooling”

1 2

3 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Input
C x 2 x 2

Output
C x 4 x 4

1 2

3 4

Bed of Nails Nearest Neighbor

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

Input
C x 2 x 2

Output
C x 4 x 4

In-Network Upsampling: Bilinear Interpolation

Input: C x 2 x 2 Output: C x 4 x 4

1 2

3 4

1.00 1.25 1.75 2.00

1.50 1.75 2.25 2.50

2.50 2.75 3.25 3.50

3.00 3.25 3.75 4.00

Use two closest neighbors in x and y
to construct linear approximations

In-Network Upsampling: Bicubic Interpolation

1 2

3 4

0.68 1.02 1.56 1.89

1.35 1.68 2.23 2.56

2.44 2.77 3.32 3.65

3.11 3.44 3.98 4.32

Input: C x 2 x 2 Output: C x 4 x 4

Use three closest neighbors in x and y to
construct cubic approximations

In-Network Upsampling: “Max Unpooling”

5 6

7 8

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Max Pooling: Remember
which position had the max

Max Unpooling: Place into
remembered positions

1 2

3 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

Rest
of

net

Pair each downsampling layer
with an upsampling layer

Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4

Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4

Dot product
between input
and filter

Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 1, pad 1

Input: 4 x 4 Output: 4 x 4

Dot product
between input
and filter

Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Dot product
between input
and filter

Learnable Upsampling: Transposed Convolution

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Input: 4 x 4 Output: 2 x 2

Dot product
between input
and filter

Learnable Upsampling: Transposed Convolution

Input: 4 x 4

Recall: Normal 3 x 3 convolution, stride 2, pad 1

Convolution with stride > 1 is “Learnable Downsampling”
Can we use stride < 1 for “Learnable Upsampling”?

Dot product
between input
and filter

Output: 2 x 2

Learnable Upsampling: Transposed Convolution

Output: 4 x 4Input: 2 x 2

3 x 3 convolution transpose, stride 2

Learnable Upsampling: Transposed Convolution

Input: 2 x 2

Weight filter by
input value and
copy to output

3 x 3 convolution transpose, stride 2

Output: 4 x 4

Learnable Upsampling: Transposed Convolution

3 x 3 convolution transpose, stride 2

Filter moves 2 pixels in output
for every 1 pixel in input

Weight filter by
input value and
copy to output

Input: 2 x 2 Output: 4 x 4

3 x 3 convolution transpose, stride 2

Input: 2 x 2

Filter moves 2 pixels in output
for every 1 pixel in input

Weight filter by
input value and
copy to output

Sum where
output overlaps

Output: 4 x 4

Learnable Upsampling: Transposed Convolution

3 x 3 convolution transpose, stride 2

Input: 2 x 2

This gives 5x5 output – need to trim one
pixel from top and left to give 4x4 output

Weight filter by
input value and
copy to output

Output: 4 x 4

Sum where
output overlaps

Learnable Upsampling: Transposed Convolution

Transposed Convolution: 1D example

a
x

y

z
b

ax

ay

az+ bx

by

bz

Input Filter Output

Output has copies of
filter weighted by input

Stride 2: Move 2 pixels
output for each pixel in
input

Sum at overlaps

Transposed Convolution: 1D example

a
x

y

z
b

ax

ay

az+ bx

by

bz

Input Filter Output
This has many names:

- Deconvolution (bad)!
- Upconvolution

- Fractionally strided
convolution
- Backward strided
convolution
- Transposed Convolution

(best name)

Convolution as Matrix Multiplication (1D Example)
We can express convolution in
terms of a matrix multiplication

Example: 1D conv, kernel
size=3, stride=1, padding=1

Convolution as Matrix Multiplication (1D Example)
We can express convolution in
terms of a matrix multiplication

Example: 1D conv, kernel
size=3, stride=1, padding=1

Transposed convolution multiplies by
the transpose of the same matrix:

When stride=1, transposed conv is just a
regular conv (with different padding rules)

Convolution as Matrix Multiplication (1D Example)
We can express convolution in
terms of a matrix multiplication

Transposed convolution multiplies by
the transpose of the same matrix:

Example: 1D conv, kernel
size=3, stride=2, padding=1

Convolution as Matrix Multiplication (1D Example)
We can express convolution in
terms of a matrix multiplication

Transposed convolution multiplies by
the transpose of the same matrix:

Example: 1D conv, kernel
size=3, stride=2, padding=1

Semantic Segmentation: Fully Convolutional Network
Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network

High-res:
D1 x H/2 x W/2

1

High-res:
D x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Input:
3 x H x W Predictions:

H x W

Downsampling:
Pooling, strided
convolution

Upsampling:
Iinterpolation,
transposed conv

Loss function: Per-Pixel cross-entropy

Sky

Cow

Grass

Computer Vision Tasks
Object Detection: Detects individual
object instances, but only gives box

Semantic Segmentation: Gives per-
pixel labels, but merges instances

Things and Stuff

Sky

Cow

Grass

Things: Object categories
that can be separated into
object instances
(e.g. cats, cars, person)

Stuff: Object categories
that cannot be separated
into instances
(e.g. sky, grass, water, trees)

Grass

Cat

Sky

Sky

Cow

Grass

Computer Vision Tasks
Object Detection: Detects individual
object instances, but only gives box
(only things)

Semantic Segmentation: Gives per-
pixel labels, but merges instances
(both things and stuff)

Computer Vision Tasks: Instance Segmentation

Semantic Object
Segmentation Detection

Instance
Segmentation

GRASS, CAT, TREE,
SKY

DOG, DOG, CAT

Classification

CAT

No spatial extent

DOG, DOG, CAT

Multiple ObjectsNo objects, just pixels

Computer Vision Tasks: Instance Segmentation

Instance Segmentation:
Detect all objects in the
image, and identify the
pixels that belong to each
object (only things)

Cow

Cow

Computer Vision Tasks: Instance Segmentation

Instance Segmentation:
Detect all objects in the
image, and identify the
pixels that belong to each
object (only things)

Approach: Perform
object detection, then
predict a segmentation
mask for each object!

Cow

Cow

Object Detection:
Faster R-CNN

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NeurIPS 2015

Instance Segmentation:
Mask R-CNN

Mask
Prediction

He et al, “Mask R-CNN”, ICCV 2017

Mask R-CNN

RoI Align

Classification Scores: C
Box coordinates (per class):
4 * C

CNN
+RPN

Predict a mask for
each of C classes:

C x 28 x 28
He et al, “Mask R-CNN”, ICCV 2017

256 x 14 x 14

Conv Conv

256 x 14 x 14

Mask R-CNN: Example Training Targets

Mask R-CNN: Example Training Targets

Mask R-CNN: Example Training Targets

Mask R-CNN: Example Training Targets

Mask R-CNN: Very Good Results!

Cow

Cow

Sky

Cow

Grass

Instance Segmentation: Separate
object instances, but only things

Semantic Segmentation: Identify both things
and stuff, but doesn’t separate instances

Beyond Instance Segmentation

Beyond Instance Segmentation:Panoptic Segmentation

C o w # 1

Grass

Trees

Sky
Label all pixels in
the image (both
things and stuff)

For “thing”
categories also
separate into
instances

Kirillov et al, “Panoptic Segmentation”, CVPR 2019
Kirillov et al, “Panoptic Feature Pyramid Networks”, CVPR 2019

C o w # 2

Beyond Instance Segmentation:Panoptic Segmentation

Kirillov et al, “Panoptic Feature Pyramid Networks”, CVPR 2019

Beyond Instance Segmentation: Human Keypoints

Represent the pose of a human
by locating a set of keypoints

e.g. 17 keypoints:
- Nose
- Left / Right eye
- Left / Right ear
- Left / Right shoulder
- Left / Right elbow
- Left / Right wrist
- Left / Right hip
- Left / Right knee
- Left / Right ankle

Mask R-CNN:
Instance Segmentation

Mask
Prediction

Keypoint
estimation

He et al, “Mask R-CNN”, ICCV 2017

Mask R-CNN:
Keypoint Estimation

Mask
Prediction

He et al, “Mask R-CNN”, ICCV 2017

Keypoint
prediction

Keypoint
estimation

Mask R-CNN:
Keypoint Estimation

Mask
Prediction

He et al, “Mask R-CNN”, ICCV 2017

Keypoint
prediction

Keypoint
estimation

Mask R-CNN: Keypoints

He et al, “Mask R-CNN”, ICCV 2017

RoI Align Conv…

Classification Scores: C
Box coordinates (per class): 4 * C
Segmentation mask: C x 28 x 28

CNN
+RPN

256 x 14 x 14
Keypoint masks:

K x 56 x 56

One mask for each of
the K different keypoints

Left ankle Right ankle

…

Ground-truth has one “pixel” turned on
per keypoint. Train with softmax loss

Joint Instance Segmentation and Pose Estimation

He et al, “Mask R-CNN”, ICCV 2017

General Idea: Add Per-
Region “Heads” to
Faster / Mask R-CNN

Mask
Prediction

Keypoint
prediction

Keypoint
estimation

Per-Region Heads:
Each receives the features after
RoI Pool / RoI Align, makes
some prediction per-region

He et al, “Mask R-CNN”, ICCV 2017

Dense Captioning:
Predict a caption
per region

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional

Caption
prediction
(LSTM)

Per-Region Heads:
Each receives the features after
RoI Pool / RoI Align, makes
some prediction per-region

Localization Networks for Dense Captioning”, CVPR 2016

Dense Captioning

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016

3D Shape Prediction:
Predict a 3D triangle
mesh per region

Mesh
predictor

Per-Region Heads:
Each receives the features after
RoI Pool / RoI Align, makes
some prediction per-region

Gkioxari, Malik, and Johnson, “Mesh R-CNN”, ICCV 2019

Summary: Many Computer Vision Tasks

Classification
Semantic

Segmentation
Object

Detection

Instance
Segmentation

CAT GRASS, CAT, TREE,
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels

	Slide 1: Deep Learning
	Slide 2: So far: Image Classification
	Slide 3: Computer Vision Tasks
	Slide 4: Object Detection: Impact of Deep Learning
	Slide 5: Last Time: Object Detection Methods
	Slide 6: Recap: Slow R-CNN Training
	Slide 7: ”Slow” R-CNN Training Input Image
	Slide 8: ”Slow” R-CNN Training Input Image
	Slide 9: ”Slow” R-CNN Training Input Image
	Slide 10: ”Slow” R-CNN Training
	Slide 11: ”Slow” R-CNN Training
	Slide 12: Fast R-CNN Training
	Slide 13: Faster R-CNN: Learnable Region Proposals
	Slide 14: Faster R-CNN Training: RPN Training
	Slide 15: Faster R-CNN Training: Stage 2
	Slide 16: Recap: Fast R-CNN Feature Cropping
	Slide 17
	Slide 18: Cropping Features: RoI Pool “Snap” to
	Slide 19: Cropping Features: RoI Pool “Snap” to
	Slide 20: Cropping Features: RoI Align
	Slide 21: Cropping Features: RoI Align
	Slide 22: Cropping Features: RoI Align
	Slide 23: Cropping Features: RoI Align
	Slide 24: Cropping Features: RoI Align
	Slide 25: Cropping Features: RoI Align
	Slide 26: Cropping Features: RoI Align
	Slide 27: Cropping Features: RoI Align
	Slide 28: Cropping Features: RoI Align
	Slide 29: Cropping Features: RoI Align
	Slide 30: Cropping Features: RoI Align
	Slide 33: Computer Vision Tasks: Object Detection
	Slide 34: Computer Vision Tasks: Semantic Segmentation
	Slide 35: Semantic Segmentation
	Slide 36: Semantic Segmentation Idea: Sliding Window
	Slide 37: Semantic Segmentation Idea: Sliding Window
	Slide 38: Semantic Segmentation: Fully Convolutional Network
	Slide 39: Semantic Segmentation: Fully Convolutional Network
	Slide 40: Semantic Segmentation: Fully Convolutional Network
	Slide 41: Semantic Segmentation: Fully Convolutional Network
	Slide 42: Semantic Segmentation: Fully Convolutional Network
	Slide 43: In-Network Upsampling: “Unpooling”
	Slide 44: In-Network Upsampling: “Unpooling”
	Slide 45: In-Network Upsampling: Bilinear Interpolation
	Slide 46: In-Network Upsampling: Bicubic Interpolation
	Slide 47: In-Network Upsampling: “Max Unpooling”
	Slide 48: Learnable Upsampling: Transposed Convolution
	Slide 49: Learnable Upsampling: Transposed Convolution
	Slide 50: Learnable Upsampling: Transposed Convolution
	Slide 51: Learnable Upsampling: Transposed Convolution
	Slide 52: Learnable Upsampling: Transposed Convolution
	Slide 53: Learnable Upsampling: Transposed Convolution
	Slide 54: Learnable Upsampling: Transposed Convolution
	Slide 55: Learnable Upsampling: Transposed Convolution
	Slide 56: Learnable Upsampling: Transposed Convolution
	Slide 57: Learnable Upsampling: Transposed Convolution
	Slide 58: Learnable Upsampling: Transposed Convolution
	Slide 59: Learnable Upsampling: Transposed Convolution
	Slide 60: Transposed Convolution: 1D example
	Slide 61: Transposed Convolution: 1D example
	Slide 62: Convolution as Matrix Multiplication (1D Example)
	Slide 63: Convolution as Matrix Multiplication (1D Example)
	Slide 64: Convolution as Matrix Multiplication (1D Example)
	Slide 65: Convolution as Matrix Multiplication (1D Example)
	Slide 66: Semantic Segmentation: Fully Convolutional Network
	Slide 67: Computer Vision Tasks
	Slide 68: Things and Stuff
	Slide 69: Computer Vision Tasks
	Slide 70: Computer Vision Tasks: Instance Segmentation
	Slide 71: Computer Vision Tasks: Instance Segmentation
	Slide 72: Computer Vision Tasks: Instance Segmentation
	Slide 73: Object Detection: Faster R-CNN
	Slide 74: Instance Segmentation: Mask R-CNN
	Slide 75: Mask R-CNN
	Slide 76: Mask R-CNN: Example Training Targets
	Slide 77: Mask R-CNN: Example Training Targets
	Slide 78: Mask R-CNN: Example Training Targets
	Slide 79: Mask R-CNN: Example Training Targets
	Slide 80: Mask R-CNN: Very Good Results!
	Slide 81: Beyond Instance Segmentation
	Slide 82: Beyond Instance Segmentation:Panoptic Segmentation
	Slide 83: Beyond Instance Segmentation:Panoptic Segmentation
	Slide 84: Beyond Instance Segmentatio
	Slide 85: Mask R-CNN: Instance Segmentation
	Slide 86: Mask R-CNN: Keypoint Estimation
	Slide 87: Mask R-CNN: Keypoint Estimation
	Slide 88: Mask R-CNN: Keypoints
	Slide 89: Joint Instance Segmentation and Pose Estimation
	Slide 90: General Idea: Add Per- Region “Heads” to Faster / Mask R-CNN
	Slide 91: Dense Captioning: Predict a caption per region
	Slide 92: Dense Captioning
	Slide 94: 3D Shape Prediction: Predict a 3D triangle mesh per region
	Slide 96: Summary: Many Computer Vision Tasks

