Lecture 1



Image Classification

> plant

Select correct class from a given set of classes



Image Classification
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Computational representation

An image is a tensor of integers
between [0, 255]:

e.g. 1920 x 1080 x 3 (RGB)



Challenges: Different Viewpoints

Pixel values change when the camera moves.




ifferent Backgrounds

D

Challenges




Challenges: Different lllumination




Challenges: Occlusion




Challenges: Variation




Image Classifier

def classify_image(image):

return cléss_label

There is no deterministic, trivial way of selecting
correct classes given just an input image



Rule-based Methods




Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning algorithms to train a classifier
3. Evaluate the classifier on new images

Example training set

def train(images, labels):
# Machine learning!
return model

def predict(model, test_images):
# Use model to predict labels
return test_labels




Nearest Neighbor Classifier



First classifier: Nearest Neighbor

def train(images, labels): Memorize all
# Machine Llearning! > data and |abe|S

return model

def predict(model, test_images): Predict the Ia_'be_l
% e sicHel +6 Bradlet Tabele > of the most similar

}
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return test_labels training image




First classifier: Nearest Neighbor
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Distance Metric to compare images

L1 distance:
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import numpy as np Nearest Neighbor classifier

class NearestNeighbor:
def __init__ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
# lets make sure that the output type matches the input type
Ypred = np.zeros(num _test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred



import numpy as np

class NearestNeighbor:
def __init__ (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]
# lets make sure that the output type matches the input type
Ypred = np.zeros(num _test, dtype = self.ytr.dtype)

# loop over all test rows
for i in xrange(num test):
# find the nearest training image to the i'th test image
# using the L1 distance (sum of absolute value differences)
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Memorize training data



ISpAFE HRRY. 85 6 Nearest Neighbor classifier
class NearestNeighbor:
def __init_ (sel?):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr=y

def predict(self, X):
it X is N x D where each row is an example we wish to predict label for """
num test = X.shape[0]

# lets make sure that the output typ

ne matches the input type
Z

Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

# loop over all test rows

for i in xrange(num test): For each test Image.
# find the nearest training image to the i'th test i : Al
e ) e Find closest train image
# using the L1 distance (sum of absolute value differences) . .
distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) Predict label of nearest Image
min_index

np.argmin(distances) # get the index with smallest distance
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred



import numpy as np

class NearestNeighbor:
def _init (self):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training dat
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def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]

4 JTotce

S g < SR R (T A L S
< I Nne ‘,:}'_)LJL [', e

f.ytr.dtype)

'at the nitnut tvp

# lets make sure that the output type
Ypred = np.zeros(num_test, dtype = s
for i in xrange(num test):

¥ find *ho

loop over all test rows

# using the L1 di1 solute value dif

distances = np.sum(np.abs(self.Xtr - X[i,:]), axis
min_index = np.argmin(distances) # get the index with smal

Ypred[i] = self.ytr[min_index] # predict the labe

return Ypred

Nearest Neighbor classifier

Q: With N examples,
how fast are training
and prediction?

Ans: Train O(1),
predict O(N)

This is bad: we want
classifiers that are fast
at prediction; slow for
training is ok



import numpy as np

class NearestNeighbor:
def __init_ (sel?):
pass

def train(self, X, y):
""" X is N x D where each row is an example. Y is 1l-dimension of size N """

self.Xtr X
self.ytr=y

def predict(self, X):
""" X is N x D where each row is an example we wish to predict label for
num test = X.shape[0]

Ypred = np.zeros(num_test, dtype =.f%l*.ytr.dtype)

for i in xrange(num test):

ing the distance (sum of J1Tferences

distantes = np.sum(np.abs(sel7.Xtr - X[i,:]), axis = 1)
min_index = np.argmin(distances) # get the index with smal
Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

Many methods exist for
fast Nearest Neighbor

A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, “Billion-scale similarity search with
GPUs”, arXiv 2017


https://github.com/facebookresearch/faiss

Example

1-nearest neighbor

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-
neighbors-plot-classification-py



K-Nearest Neighbors

Instead of copying label from nearest neighbor,
take majority vote from K closest points




K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance
dy(I, I,) Zm 2|
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L2 (Euclidean) distance
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

d(Ib) =Y |IP - I7| (1, ) = \/Z(If—f«::)z
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Hyperparameters

What is the optimal value of k to
use?

What is the optimal distance metric
to use?

Hyperparameters are choices about the
algorithms themselves.



Setting Hyperparameters

Idea #1: Choose hyperparameters
that work best on the training data

train




Setting Hyperparameters




Setting Hyperparameters

Idea #2: choose hyperparameters
that work best on test data

train test




Setting Hyperparameters

Idea #2: se hyperparameters
that work best on

test




Setting Hyperparameters

Idea #2: se hyperparameters
that work best on

test
ldea #3: Split data into train, val; choose
hyperparameters on val and evaluate on test
train validation test




Setting Hyperparameters

train

Idea #4. Cross-Validation: Split data into folds,
try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test
fold 1 fold 2 fold 3 fold 4 fold 5 test




Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images
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Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images
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Setting Hyperparameters

032 Crogs-valldatlon on k

Example of
5-fold cross-validation
for the value of k.

Points: single prediction
outcomes

Line: mean

Bars: standard deviation

k ~= 7 achieves best
; m @ ; 5 o performance




kNN Results
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kNN Results
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K-Nearest Neighbors Summary

Image classification requires a training set of images and labels. It predicts
labels on a test set.

The k-Nearest Neighbors classifier predicts labels based on the k nearest
training examples

Distance metric and k are hyperparameters

Select hyperparameter values using a validation set



Spatial Coverage Needs Increases with Dimension
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k-Nearest Neighbor Drawbacks

- Distance metrics on pixels are not informative
- Very slow at prediction

Original Tinted




Linear Classifier



Linear classifiers : Motivation

kNN produce decision boundaries by calculating them during
prediction.

Can we define a (simple) function during training to define decision
boundaries directly?

X2




Plane Geometry

 Anylinein 2D can be expressed as the set of solutions (x,y) to
the equation ax+by+c=0 (an implicit line)
— ax+by+c > 0 is one side of the line
— ax+by+c < 0 is the other
— ax+by+c =0 is the line itself




Plane Geometry

* In 3D, a (hyper)plane can be expressed as the set of
solutions (x,y,z) to the equation ax+by+cz+d=0
— ax+by+cz+d > 0 is one side of the plane
— ax+by+cz+d < 0 is the other side

— ax+by+cz+d = 0 is the plane itself




Linear Classifier

* Inddimensions,
CotCy X +...+C4* x4 =0
* Abbreviate with dot product:

oy — % Xy —
Co+C:X=Cy+C; " X +...4+C X4 =0

|A| cos6

Dot product



Describe relation between image and label

Image

) f
7k -  Label
e ik

- ﬁ A :
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Describe relation between image and label

Image

ok
D ..'!{ «

Array of 32x32x3 numbers
(3072 numbers total)

- f(x,W)

T
W

parameters
or weights

10 numbers defining
class scores



Parametric Approach: Linear Classifier

| f(x,W) = Wx

mage
— 10 numbers defining
i |8 > 1(x,W) " class scores

= on T

Array of 32x32x3 numbers
(3072 numbers total) W

parameters
or weights



Parametric Approach: Linear Classifier

f(x,W) = Wx

/

Shape: (10,1)



Parametric Approach: Linear Classifier

f(x,W) = Wx

/ \

Shape: (3072,1)
Shape: (10,1)



Parametric Approach: Linear Classifier

Shape: (10,3072)

f(x,W) = Wx

/ \

Shape: (3072,1)
Shape: (10,1)



Parametric Approach: Linear Classifier

vy — * * .
W:l X_Wl,l X1+...'|'W1’3072 X3072 Shape: (10,3072)

f(x,W) = Wx
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Shape: (3072,1)
Shape: (10,1)



Parametric Approach: Linear Classifier

vy — * * .
W:l X‘W1,1 X1+...'|'W1’3072 X3072 Shape: (10,3072)

f(x,W) = Wx
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Parametric Approach: Linear Classifier

vy — * * .
W:l X‘W1,1 X1+...'|'W1’3072 X3072 Shape: (10,3072)

f(x,W) = Wx+b

/ \

o o°° Shape: (3072,1)
%o, % ¢ Shape: (10,1)




Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

56

231

24

Inputimage




Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

56

231

1.1

0.2 [-05| 0.1 | 2.0
56 | 231
2‘; =B 1.5 | 1.3 | 2.1 | 0.0
| 0 02502 |-03
Input image

24

3.2

-1.2

-96.8

437.9

61.95

Cat score

Dog score

Ship score



Linear Classifier Predict Efficiently

- Predict fast by generating scores with matrix-vector
multiplications

scores = W.dot(image) + b




Difficult cases for linear classifiers




Apply Transformations

e f(x, y) = (r(x, y), 8(x, y))

>

) r

Extract features using transformations




Example: Color Histogram

Image A Image B

E
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0.20} 0.20}
Smoothed .| aaal

Histogram
0.10} ! 0.10}
0.05} 0.05}
0.00 S 0.00



Example: Histogram of Oriented Gradients (HoG)

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



Example: Histogram of Oriented Gradients (HoG)
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Image Feature Aggregation
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Classification on Image Features

Feature Extraction

sl hals pee

+
Class Label

10 numbers giving
scores for classes




Classification on Image Features

W
Feature Extraction l
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+
Class Label

10 numbers giving
scores for classes




Classification on Image Features

Feature Extraction

It it e

+
Class Label

W?

l

f

10 numbers giving
scores for classes



Classification on Image Features

Feature Extraction

It it e

+
Class Label

W?

l

f

10 numbers giving
scores for classes

Measure how well a set of values for W classifies an input



How expressive are the values of W?

— f(x, W)




How expressive are the values of W?

W —_—
data loss
—3 f(xu, W) —> L
X; —
Vi

L: Metric to assess what loss of data classification our model incurs



Loss Function

W —_—
data loss
— f(x, W) —> L
A
X; —
Vi

L: Metric to assess what loss of data classification our model incurs



Suppose: 3 training examples, 3 classes. A loss function measures the
With some W the f(z, W) = Wz are: performance of a classifier

cat 3.2 1.3
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1



Suppose: 3 training examples, 3 classes.

Aloss function measures the
With some W the f(;[;, W) — W are:

performance of a classifier
Given a dataset of examples
N
UTiy ¥i) Fiza

Where g, is image and
U; s (integer) label

cat 3.2 1.3
car 5.1 49 25
frog 1.7 20 -31



Suppose: 3 training examples, 3 classes. A loss function measures the
With some W the f(z, W) = Wz are: performance of a classifier

Given a dataset of examples

{(zi,9i) ity

Where g, is image and

cat 1.3 292 Ui is (integer) label
car 4.9 2.5 Loss over the dataset is an

average of loss over examples:
frog 2.0 -3.1

ZL sz, ) yi)



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the f(z, W) = Wz are:
Given an example (CBZ', yz')

where . is the image and
where Ui Is the (integer) label,

and using the shorthand for the
scores vector: g — f(g;“ W)

the SVM loss has the form:

cat 32 13 .
car 51 49 25 L-X{l_ ., imevt

J#Yi

frog -1.7 2.0 -3.1 :ZmaX(O,Sj—Syi_l_l)

J#Yi



Hinge loss

penalty (loss) size

3
Lizz 0 1f8yi2.sj—|—1
$j — 8y, +1 otherwise

= Z max (0, s; — sy, + 1)

J#Yi
_—— 0 : ——
incorrectly classified : correctly classified




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the f(z, W) = Wz are:
Given an example (CBZ', yz')

where T; is the image and
where Y; Is the (integer) label,

and using the notation for the
scores vector: g — f(g;“ W)

cat the SVM loss has the form:

L =) ., max(0,s; —s; +1

frog -1.7 2.0 -3.1



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the f(;[;, W) — W are:
Given an example (CBZ', yz')

where T; is the image and
where Y; Is the (integer) label,

and using the notation for the
scores vector: g — f(g;“ W)

cat the SVM loss has the form:
car Li = ). ;. max(0, 55 — sy, + 1)
= max(0, 5.1-3.2+1)
frog +max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
Losses: = g.g +0




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the f(;[;, W) — W are:
Given an example (CBZ', yz')

where T; is the image and
where Y; Is the (integer) label,

and using the notation for the
scores vector: g — f(g;“ W)

the SVM loss has the form:

cat R 3_21

Li = 4, max(0,s; — sy, + 1)

car 5.1 4.9 2.5

=max(0, 1.3-4.9 +1)

) _ +max(0, 2.0 - 4.9 + 1)
frog 1.7 2.0 3.1 = max(0, -2.6) + max(0, -1.9)
Losses: 2.9 0 ~ot0

=0




Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the f(;[;, W) — W are:
Given an example (CBZ', yz')

where T; is the image and
where Y; Is the (integer) label,

and using the notation for the
scores vector: g — f(g;“ W)

the SVM loss has the form:

cat 3.2
' Li = 4, max(0,s; — sy, + 1)

car 5.1 4.9 2.5 = max(0, 2.2 - (-3.1) + 1)

_ _ +max(0, 2.5 - (-3.1) + 1)
frog 1.7 2.0 3.1 = max(0, 6.3) + max(0, 6.6)

Losses: 2.9 0 12.9 =6.3+6.6

=12.9




Suppose: 3 training examples, 3 classes.
With some W the f(;[;, W) — W are:

cat - 3_21
car 5.1 4.9 2.5

frog -1.7 2.0 -3.1
Losses: 2.9 0 12.9

Multiclass SVM loss:

Given an example (il?z', yz')

where T; is the image and
where Y; Is the (integer) label,

and using the notation for the
scores vector: g — f(g;“ W)

the SVM loss has the form:

Li = 4, max(0,s; — sy, + 1)

Loss over full dataset is average:

N
L= % D iy Li

L=(2.9+0+12.9)/3
=527




Multiclass SVM Loss: Example code

Ly = Zj#yz- max((), §j — Sy, T 1)

def L_i vectorized(x, y, W):
scores = W.dot(x)
margins = np.maximum(0©, scores - scores[y] + 1)
margins[y] = 0
loss i = np.sum(margins)
return loss 1



Li = ., max(0,s; — sy, +1)

Suppose we increase W for class 2 twofold

Before:

=max(0, 1.3-4.9+1)
+max(0, 2.0-4.9 +1)

= max(0, -2.6) + max(0, -1.9)

=0+0
=0
cat With W twice as large:
=max(0, 2.6-9.8 +1)
car 51 0.8 2 5 +max(0, 4.0 - 9.8 + 1)
' ' ' = max(0, -6.2) + max(0, -4.8)
frog 17 40 81 -ovo

Losses: 2.9 0 12.9




Set of weights W
that compute O loss

for a class

Wo 1
Wo2

|

How to select optimal weights
for classification?



Set of weights W
that compute O loss

for a class

Wo 1
Wo2

|

Select the weights that lead
to best generalization, i.e.
prefer simpler models.



Regularization

Data loss: Model predictions
should match training data



Regularization

N

LW)= =) Li(f(zi, W), 5:) + AR(W)

1=1

N

e

Data loss: Model predictions
should match training data

)

Regularization: Prevent the model
from doing too well on training data



Regularization

high A small A



Regularization: Future Data Ex. 1

high A small A



Regularization: Future Data Ex. 2

high A small A



Regularization

N

\ = regularization strength
(hyperparameter)

L(W) — _ZLz( (332, )7yz)+)‘R(W)

1=1

N

e

Data loss: Model predictions
should match training data

)

Regularization: Prevent the model
from doing too well on training data



Regularization \ = regularization strength
(hyperparameter)

L(W) — _ZLz( (332, )7yz)+)‘R(W)

1=1
N J w_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples

| 2 reqularization: R(W) =>_,>, W;?’l
L1 regularization: R(W) =>_, >, |[Wi|

Elastic net (L1+L2): R(W) =Y, >, W2 + (Wil



Regularization \ = regularization strength

(hyperparameter)
1 N
LW) =+ D Li(f (@i, W), 3:) + AR(W)
=1
N J w_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data
Simple examples More complex:
| 2 reqularization: R(W) =>_,>, sz,l Dropout o
L1 regularization: R(W) =Y, ¥, |Wi| Batch normalization

Elastic net (L1+L2): R(W)=Y, Zlﬂwxf,z + Wi Stochastic depth, fractional pooling, etc



Regularization: Expressing Preferences

L2 Regularization

z=[1,1,1,1] RW) =Y, >, W2

wy = [1,0,0,0]

wsy = [0.25,0.25,0.25,0.25]

/ I..| - S
'wla:—wZ:z:—l



Regularization: Expressing Preferences

L2 Regularization

z=[1,1,1,1] RW) =Y, >, W2

w; = [1,0,0, 0]

Wy = [025, 025’ 025, 025] L2 regularization prefers

evenly spread weights
closeto O

/ I..| - S
wlaz—w2a:—1



Softmax Classifier (Multinomial Logistic Regression)



Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

s = f(zi; W)




Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

PLY = kX =m5) = 5251- where | 8§ = f(:])z, W)




Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

PLY = kX =m5) = glskesj where | 8§ = f(CBz, W)

Softmax function



Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

PLY = kX =m5) = 525]- where | 8§ = f(a:z, W)

8 5.1 = Softmaxfunction = (.8 _% qé
217 > > 00 5 8
2 5



Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

PY = &X' =m5) = Ze.sisj where |8 = f(a:z, W)

Want to maximize the log likelihood, or (for a loss function)
to minimize the negative log likelihood of the correct class:

L; = —log P(Y = 4| X = z;)




Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

PY = &X' =m5) = Zsk where |8 = f(CBz, W)

Want to maximize the log likelihood, or (for a loss function)
to minimize the negative log likelihood of the correct class:

L; = —log P(Y = 4| X = z;)

insummary: [, = log( ZS:: o )



Cross-Entropy Loss  L; = — log( e -

Range of negative log-likelihood

S T a
0.775 1 .
0.116 Lce (S.T) 0 ey
0.039 | 0 3
0.070 0



Cross-Entropy Loss [; =

Multiplying many
probabilities/likelihnood may lead to
very small numbers:

e.g. 0.9*0.1*0.01 = 0.0009 -> this
IS undesirable

To avoid this we can express
products as sums by using the log
function:

log(a - b) = log(a) + log(b)

— log(

Range of negative log-likelihood

T
0.0

T
0.2

T
0.4

T
0.6

T
0.8

T
1.0




Softmax Classifier (Multinomial Logistic Regression)

L; = —log(<%-)

Zj e’
cat 32
car 51
frog -1.7

unnormalized log probabilities



Softmax Classifier (Multinomial Logistic Regression)

Lz' — log( 5;y;sj )

unnormalized probabilities

cat 3.2 24.5
car 51 |+ 164.0
frog -1.7 0.18

unnormalized log probabilities



Softmax Classifier (Multinomial Logistic Regression)

Li = —log(<£%)

> e

unnormalized probabilities
cat 3.2 24.5 0.13
car 51 [ |164.0 | 0.87
frog | -1.7 0.18 0.00

unnormalized log probabilities probabilities



Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

3.2
5.1
-1.7

L; = —log( e

unnormalized probabilities

exp

24.5
164.0
0.18

normalize

unnormalized log probabilities

-

Zj e’

)

0.13 | L;=-l0g(0.13)
=0.89
0.87
0.00
probabilities



Softmax vs. SVM

matrix multiply + bias offset

0.0

0.2

hinge loss (SVM)

0.01 | -0.05 | 0.1 | 0.05 15
0.7 0.2 0.05 0.16 22
00 | 045 | -02 | 0.03 44

|74 56
L

Y;

-2.85
max(0, -2.85-028 + 1) +
0.86 max(0, 0.86 - 0.28 + 1)
s 1.58
cross-entropy loss (Softmax)
-2.85 0.058 0.016
ex, normalize

0.86 _’?.. 236 | —— 5| 0.631 | ~109(0.333)

(to sum =

to one) 1.04
0.28 1.32 0.353




Softmax vs. SVM

. — esyz . — S
L = —log(55) Li =Y., max(0,s; — s, + 1)
4.
m— (}-1 losS
— hinge loss
3t | cross-entropy loss
= cxponential loss




Summary

- We have some dataset of (x,y) eq.
- We have a score function: g — f(a: W) — We
- We have a loss function: ’

Softmax
Sy-
L' _ — 10 & zs. regularization loss
L = Zj;éyz- max (0, §; — 8y, + 1) Ls faw) = |

L= % Zf\il L; + R(W) complete loss Xi ——

|

Vi



	Slide 1: Lecture 1
	Slide 2: Image Classification
	Slide 3: Image Classification
	Slide 4: Challenges: Different Viewpoints
	Slide 5: Challenges: Different Backgrounds
	Slide 6: Challenges: Different Illumination
	Slide 7: Challenges: Occlusion
	Slide 8: Challenges: Variation
	Slide 9: Image Classifier
	Slide 10: Rule-based Methods
	Slide 11: Machine Learning: Data-Driven Approach
	Slide 12: Nearest Neighbor Classifier
	Slide 13: First classifier: Nearest Neighbor
	Slide 14: First classifier: Nearest Neighbor
	Slide 15: Distance Metric to compare images
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Example
	Slide 22: K-Nearest Neighbors
	Slide 23
	Slide 24: K-Nearest Neighbors: Distance Metric
	Slide 25: Hyperparameters
	Slide 26: Setting Hyperparameters
	Slide 27: Setting Hyperparameters
	Slide 28: Setting Hyperparameters
	Slide 29: Setting Hyperparameters
	Slide 30: Setting Hyperparameters
	Slide 31: Setting Hyperparameters
	Slide 32: Example Dataset: CIFAR10
	Slide 33: Example Dataset: CIFAR10
	Slide 34: Setting Hyperparameters
	Slide 35: kNN Results
	Slide 36: kNN Results
	Slide 37: K-Nearest Neighbors Summary
	Slide 38: Spatial Coverage Needs Increases with Dimension
	Slide 39: k-Nearest Neighbor Drawbacks
	Slide 40: Linear Classiﬁer
	Slide 41: Linear classifiers : Motivation
	Slide 42: Plane Geometry
	Slide 43: Plane Geometry
	Slide 44: Linear Classifier
	Slide 45
	Slide 46
	Slide 47: f(x,W) = Wx
	Slide 48: f(x,W) = Wx
	Slide 49: f(x,W) = Wx
	Slide 50: f(x,W) = Wx
	Slide 51: f(x,W) = Wx
	Slide 52: f(x,W) = Wx
	Slide 53: f(x,W) = Wx+b
	Slide 54: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
	Slide 55: Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
	Slide 56
	Slide 57: Difficult cases for linear classifiers
	Slide 58: Apply Transformations
	Slide 59: Example: Color Histogram
	Slide 60: Example: Histogram of Oriented Gradients (HoG)
	Slide 61
	Slide 62: Image Feature Aggregation
	Slide 63: Classification on Image Features
	Slide 64: Classification on Image Features
	Slide 65: Classification on Image Features
	Slide 66: Classification on Image Features
	Slide 67: How expressive are the values of W?
	Slide 68: How expressive are the values of W?
	Slide 69: Loss Function
	Slide 70: Suppose: 3 training examples, 3 classes.  With some W the scores
	Slide 71
	Slide 72: Suppose: 3 training examples, 3 classes.  With some W the scores
	Slide 73: Suppose: 3 training examples, 3 classes.  With some W the scores
	Slide 74: Hinge loss
	Slide 75: Suppose: 3 training examples, 3 classes.  With some W the scores
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Multiclass SVM Loss: Example code
	Slide 81: Suppose we increase W for class 2 twofold
	Slide 82
	Slide 83
	Slide 84
	Slide 85: Regularization
	Slide 86: Regularization
	Slide 87: Regularization: Future Data Ex. 1
	Slide 88: Regularization: Future Data Ex. 2
	Slide 89: Regularization
	Slide 90: Regularization
	Slide 91: Regularization
	Slide 92: Regularization: Expressing Preferences
	Slide 93: Regularization: Expressing Preferences
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107: Softmax vs. SVM
	Slide 108: Softmax vs. SVM
	Slide 109

