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Image Classification

plant

Select correct class from a given set of classes



Image Classification

Computational representation

An image is a tensor of integers 

between [0, 255]:

e.g. 1920 x 1080 x 3 (RGB)



Challenges: Different Viewpoints

Pixel values change when the camera moves.



Challenges: Different Backgrounds



Challenges: Different Illumination



Challenges: Occlusion



Challenges: Variation



There is no deterministic, trivial way of selecting 

correct classes given just an input image

Image Classifier



Rule-based Methods

?



Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels

2. Use Machine Learning algorithms to train a classifier

3. Evaluate the classifier on new images
Example training set



Nearest Neighbor Classifier

Lecture 2 -



First classifier: Nearest Neighbor

Memorize all 

data and labels

Predict the label 

of the most similar 

training image

Lecture 2 -



First classifier: Nearest Neighbor

Distance Metric

Lecture 2 -

Training data with labels

query data

?

deer bird plane cat car



Distance Metric to compare images

L1 distance:

Lecture 2 -

add



Nearest Neighbor classifier
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Nearest Neighbor classifier
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Memorize training data
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For each test image:

Find closest train image 

Predict label of nearest image

Nearest Neighbor classifier



Nearest Neighbor classifier

Q: With N examples,

how fast are training

and prediction?

Ans: Train O(1), 

predict O(N)

This is bad: we want 

classifiers that are fast 

at prediction; slow for 

training is ok

Lecture 2 -



Lecture 2 -

Many methods exist for 

fast Nearest Neighbor

A good implementation:
https://github.com/facebookresearch/faiss

Johnson et al, “Billion-scale similarity search with 

GPUs”, arXiv 2017

Nearest Neighbor classifier

https://github.com/facebookresearch/faiss


Example

1-nearest neighbor

Lecture 2 -

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-
neighbors-plot-classification-py



K-Nearest Neighbors

Instead of copying label from nearest neighbor, 

take majority vote from K closest points

Lecture 2 -

K = 1 K = 3 K = 5



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance
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K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance L2 (Euclidean) distance

K = 1

Lecture 2 -

K = 1



Hyperparameters

Lecture 2 -

What is the optimal value of k to 

use? 

What is the optimal distance metric

to use?

Hyperparameters are choices about the

algorithms themselves.



Setting Hyperparameters
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Idea #1: Choose hyperparameters 

that work best on the training data

train



Setting Hyperparameters
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Idea #1: Choose hyperparameters 

that work best on the training data

train



Setting Hyperparameters
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Idea #1: Choose hyperparameters 

that work best on the training data

Idea #2: choose hyperparameters 

that work best on test data

train test

train



Setting Hyperparameters
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train test

Idea #2: choose hyperparameters 

that work best on test data

train

Idea #1: Choose hyperparameters 

that work best on the training data



Setting Hyperparameters
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train test

Idea #3: Split data into train, val; choose 

hyperparameters on val and evaluate on test

train validation test

train

Idea #1: Choose hyperparameters 

that work best on the training data

Idea #2: choose hyperparameters 

that work best on test data



Setting Hyperparameters

Lecture 2 -

fold 1 fold 2 fold 3 fold 4 fold 5 test

Idea #4: Cross-Validation: Split data into folds, 

try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test

fold 1 fold 2 fold 3 fold 4 fold 5 test

train



Example Dataset: CIFAR10

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes

50,000 training images

10,000 testing images
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Example Dataset: CIFAR10

Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes

50,000 training images

10,000 testing images Test images and nearest neighbors

Lecture 2 -



Setting Hyperparameters

Example of

5-fold cross-validation 

for the value of k.

Points: single prediction 

outcomes

Line: mean

Bars: standard deviation

k ~= 7 achieves best 

performance

Lecture 2 -



kNN Results
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kNN Results
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K-Nearest Neighbors Summary

Lecture 2 -

Image classification requires a training set of images and labels. It predicts

labels on a test set.

The k-Nearest Neighbors classifier predicts labels based on the k nearest 

training examples

Distance metric and k are hyperparameters

Select hyperparameter values using a validation set



Spatial Coverage Needs Increases with Dimension

Dimensions = 1

Points = 4

Dimensions = 3

Points = 43

Dimensions = 2

Points = 42

Theoretical data distribution Training data 
class A

Training data 
class B



k-Nearest Neighbor Drawbacks

- Distance metrics on pixels are not informative

- Very slow at prediction

Tinted

Lecture 2 -

Original



Linear Classifier
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Linear classifiers : Motivation

• kNN produce decision boundaries by calculating them during 
prediction.

• Can we define a (simple) function during training to define decision 
boundaries directly?

x2

x1



Plane Geometry

• Any line in 2D can be expressed as the set of solutions (x,y) to 
the equation ax+by+c=0 (an implicit line)

– ax+by+c > 0 is one side of the line

– ax+by+c < 0 is the other

– ax+by+c = 0 is the line itself

y

x

b

a



Plane Geometry

• In 3D, a (hyper)plane can be expressed as the set of 
solutions (x,y,z) to the equation ax+by+cz+d=0

– ax+by+cz+d > 0 is one side of the plane

– ax+by+cz+d < 0 is the other side

– ax+by+cz+d = 0 is the plane itself

a b

c

z

x

y



Linear Classifier

• In d dimensions,
c0+c1*x1+…+cd*xd =0

• Abbreviate with dot product:

 c0 +c·x=c0+c1*x1+…+cd*xd =0

Dot product



Image

Label

Describe relation between image and label

f



f(x,W)

Lecture 2 -

Array of 32x32x3 numbers 

(3072 numbers total) W
parameters

or weights

Image

10 numbers defining 

class scores

Describe relation between image and label



Parametric Approach: Linear Classifier

Image

W
parameters

or weights

f(x,W)
10 numbers defining 

class scores

Lecture 2 -

Array of 32x32x3 numbers 

(3072 numbers total)

f(x,W) = Wx



Parametric Approach: Linear Classifier

f(x,W) = Wx

Shape: (10,1)



Parametric Approach: Linear Classifier

f(x,W) = Wx

Shape: (3072,1)
Shape: (10,1)



Parametric Approach: Linear Classifier

f(x,W) = Wx

Shape: (10,1)
Shape: (3072,1)

Shape: (10,3072)



Parametric Approach: Linear Classifier

f(x,W) = Wx

Shape: (10,1)
Shape: (3072,1)

Shape: (10,3072)w1·x=w1,1*x1+…+w1,3072*x3072 



Parametric Approach: Linear Classifier

f(x,W) = Wx

Shape: (10,1)
Shape: (3072,1)

Shape: (10,3072)w1·x=w1,1*x1+…+w1,3072*x3072 



Parametric Approach: Linear Classifier

f(x,W) = Wx+b

Shape: (10,1)
Shape: (3072,1)

Shape: (10,3072)w1·x=w1,1*x1+…+w1,3072*x3072 



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image

56

231

24

2

56 231

24 2

Flatten tensors into a vector



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W

Input image

56

231

24

2

56 231

24 2

1.1

3.2

-1.2

+ =

-96.8

437.9

61.95

Cat score

Dog score

Ship score

b

Flatten tensors into a vector

x



Linear Classifier Predict Efficiently

- Predict fast by generating scores with matrix-vector 

multiplications

scores = W.dot(image) + b



Difficult cases for linear classifiers



Apply Transformations

f(x, y) = (r(x, y), θ(x, y))

x

y

r

θ

Extract features using transformations



Example: Color Histogram



Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions  

Within each region quantize edge  

direction into 9 bins

Example: 320x240 image gets divided  

into 40x30 bins; in each bin there are  

9 numbers so feature vector has  

30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



Example: Histogram of Oriented Gradients (HoG)



Image Feature Aggregation

𝑓1(𝑥)

𝑥

𝑓2(𝑥)

𝑓3(𝑥)

𝑓1(𝑥) ⊕ 𝑓2(𝑥) ⊕ 𝑓3(𝑥)



Feature Extraction

f
10 numbers giving  

scores for classes

Classification on Image Features

+
Class Label



f
10 numbers giving  

scores for classes

Classification on Image Features

W
Feature Extraction

+
Class Label



f
10 numbers giving  

scores for classes

Classification on Image Features

W?
Feature Extraction

+
Class Label



f
10 numbers giving  

scores for classes

Classification on Image Features

W?

Measure how well a set of values for W classifies an input

Feature Extraction

+
Class Label



How expressive are the values of W?

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊



How expressive are the values of W?

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

L: Metric to assess what loss of data classification our model incurs



Loss Function

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

L: Metric to assess what loss of data classification our model incurs



cat

car

frog

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

A loss function measures the 

performance of a classifier

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1



cat

car

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Given a dataset of examples

Where is image and

is (integer) label

A loss function measures the 

performance of a classifier

Suppose: 3 training examples, 3 classes.  
With some W the scores are:



cat

car

frog

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

Given a dataset of examples

Where is image and

is (integer) label

Loss over the dataset is an

average of loss over examples:

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

A loss function measures the 

performance of a classifier



cat

car

frog

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

Multiclass SVM loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the SVM loss has the form:

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1



Hinge loss



cat

car

frog

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

Multiclass SVM loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the notation for the  

scores vector:

the SVM loss has the form:

2.2

2.5

-3.1

12.9

1.3

4.9

2.0

0

3.2

5.1

-1.7

2.9



cat

car

frog

Losses:

Multiclass SVM loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the notation for the  

scores vector:

the SVM loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

2.2

2.5

-3.1

12.9

1.3

4.9

2.0

0

3.2

5.1

-1.7

2.9



cat

car

frog

Losses:

Multiclass SVM loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the notation for the  

scores vector:

the SVM loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

2.2

2.5

-3.1

12.9

1.3

4.9

2.0

0

3.2

5.1

-1.7

2.9



cat

car

frog

Losses:

Multiclass SVM loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the notation for the  

scores vector:

the SVM loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 6.3) + max(0, 6.6)

= 6.3 + 6.6

= 12.9

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

2.2

2.5

-3.1

12.9

1.3

4.9

2.0

0

3.2

5.1

-1.7

2.9



cat

car

frog

Losses:

Multiclass SVM loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the notation for the  

scores vector:

the SVM loss has the form:

Loss over full dataset is average:

L = (2.9 + 0 + 12.9)/3

= 5.27

2.2

2.5

-3.1

12.9

1.3

4.9

2.0

0

3.2

5.1

-1.7

2.9

Suppose: 3 training examples, 3 classes.  
With some W the scores are:



Multiclass SVM Loss: Example code



Suppose we increase W for class 2 twofold

Before:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

With W twice as large:

= max(0, 2.6 - 9.8 + 1)

+max(0, 4.0 - 9.8 + 1)

= max(0, -6.2) + max(0, -4.8)

= 0 + 0

= 0

cat

car

frog

Losses:

2.2

2.5

-3.1

12.9

2.6

9.8

4.0

0

3.2

5.1

-1.7

2.9



𝑊𝑜1

𝑊𝑜2

𝑊𝑜3

𝑊𝑜𝑛

Set of weights 𝑊 
that compute 0 loss 
for a class

.

.

.

𝐿𝑖 = 0

How to select optimal weights 
for classification?



𝑊𝑜1

𝑊𝑜2

𝑊𝑜3

𝑊𝑜𝑛

Set of weights 𝑊 
that compute 0 loss 
for a class

.

.

.

𝐿𝑖 = 0

Select the weights that lead 
to best generalization, i.e. 
prefer simpler models.



Data loss: Model predictions  

should match training data

Regularization



Regularization

Data loss: Model predictions  

should match training data
Regularization: Prevent the model  

from doing too well on training data



Regularization

high 𝜆 small 𝜆



Regularization: Future Data Ex. 1

high 𝜆 small 𝜆



Regularization: Future Data Ex. 2

high 𝜆 small 𝜆



Regularization

Data loss: Model predictions  

should match training data
Regularization: Prevent the model  

from doing too well on training data

= regularization strength  

(hyperparameter)



Regularization

Data loss: Model predictions  

should match training data
Regularization: Prevent the model  

from doing too well on training data

= regularization strength  

(hyperparameter)

Simple examples  

L2 regularization: 

L1 regularization:

Elastic net (L1+L2):



Regularization

Data loss: Model predictions  

should match training data
Regularization: Prevent the model  

from doing too well on training data

= regularization strength  

(hyperparameter)

Simple examples  

L2 regularization: 

L1 regularization:

Elastic net (L1+L2):

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc



Regularization: Expressing Preferences

L2 Regularization



Regularization: Expressing Preferences

L2 Regularization

L2 regularization prefers 

evenly spread weights 

close to 0



Softmax Classifier (Multinomial Logistic Regression)



Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.



scores = unnormalized log probabilities of the classes.

where

Softmax Classifier (Multinomial Logistic Regression)



Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

where

Softmax function



Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

where

Softmax function

sc
o

re
s

p
ro

b
ab

ili
ti

es
o

r 
co

n
fi

d
en

ce

3.2

5.1

-1.7

0.2

0.8

 0.0



Want to maximize the log likelihood, or (for a loss function)  

to minimize the negative log likelihood of the correct class:

scores = unnormalized log probabilities of the classes.

where

Softmax Classifier (Multinomial Logistic Regression)



Want to maximize the log likelihood, or (for a loss function)  

to minimize the negative log likelihood of the correct class:

in summary:

scores = unnormalized log probabilities of the classes.

where

Softmax Classifier (Multinomial Logistic Regression)



Cross-Entropy Loss



Cross-Entropy Loss

Multiplying many 

probabilities/likelihood may lead to 

very small numbers:

e.g. 0.9*0.1*0.01 = 0.0009 → this 

is undesirable

To avoid this we can express 

products as sums by using the log 

function:

log 𝑎 ∙ 𝑏 = log 𝑎 + log(𝑏)



cat

car

frog

3.2

5.1

-1.7

unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)



cat

car

frog

3.2

5.1

-1.7

unnormalized log probabilities

24.5

164.0

0.18

exp

unnormalized probabilities

Softmax Classifier (Multinomial Logistic Regression)



cat

car

frog

3.2

5.1

-1.7

unnormalized log probabilities

24.5

164.0

0.18

exp

unnormalized probabilities

normalize
0.13

0.87

0.00

probabilities

Softmax Classifier (Multinomial Logistic Regression)



cat

car

frog

3.2

5.1

-1.7

unnormalized log probabilities

24.5

164.0

0.18

exp

unnormalized probabilities

normalize
0.13

0.87

0.00

probabilities

𝐿𝑖 = -log(0.13)

= 0.89

Softmax Classifier (Multinomial Logistic Regression)



Softmax vs. SVM



Softmax vs. SVM



Summary

- We have some dataset of (x,y)

- We have a score function:

- We have a loss function:

e.g.

Softmax

SVM

Complete loss

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

regularization loss
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