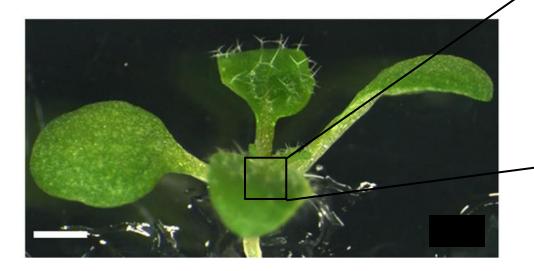
Lecture 1

Image Classification

Select correct class from a given set of classes

Image Classification



[[105	112	108	111	104	99	106	99	96	103	112	119	104	97	93	87]
[91	98	102	106	104	79	98	103	99	105	123	136	110	105	94	85]
[76	85	90	105	128	105	87	96	95	99	115	112	106	103	99	85]
[99	81	81	93	120	131	127	100	95	98	102	99	96	93	101	94]
[106	91	61	64	69	91	88	85	101	107	109	98	75	84	96	95]
[114	108	85	55	55	69	64	54	64	87	112	129	98	74	84	91]
[133	137	147	103	65	81	80	65	52	54	74	84	102	93	85	82]
[128	137	144	140	109	95	86	70	62	65	63	63	60	73	86	101]
[125	133	148	137	119	121	117	94	65	79	80	65	54	64	72	98]
[127	125	131	147	133	127	126	131	111	96	89	75	61	64	72	84]
[115	114	109	123	150	148	131	118	113	109	100	92	74	65	72	78]
[89	93	90	97	108	147	131	118	113	114	113	109	106	95	77	80]
[63	77	86	81	77	79	102	123	117	115	117	125	125	130	115	87]
[62	65	82	89	78	71	80	101	124	126	119	101	107	114	131	119]
[63	65	75	88	89	71	62	81	120	138	135	105	81	98	110	118]
[87	65	71	87	106	95	69	45	76	130	126	107	92	94	105	112]
[118	97	82	86	117	123	116	66	41	51	95	93	89	95	102	107]
[164	146	112	80	82	120	124	104	76	48	45	66	88	101	102	109]
[157	170	157	120	93	86	114	132	112	97	69	55	70	82	99	94]
[130	128	134	161	139	100	109	118	121	134	114	87	65	53	69	86]
[128	112	96	117	150	144	120	115	104	107	102	93	87	81	72	79]
[123	107	96	86	83	112	153	149	122	109	104	75	80	107	112	99]
[122	121	102	80	82	86	94	117	145	148	153	102	58	78	92	107]
[122	164	148	103	71	56	78	83	93	103	119	139	102	61	69	84]]

Computational representation

An image is a tensor of integers between [0, 255]:

e.g. 1920 x 1080 x 3 (RGB)

Challenges: Different Viewpoints

Pixel values change when the camera moves.

Challenges: Different Backgrounds

Challenges: Different Illumination

Challenges: Occlusion

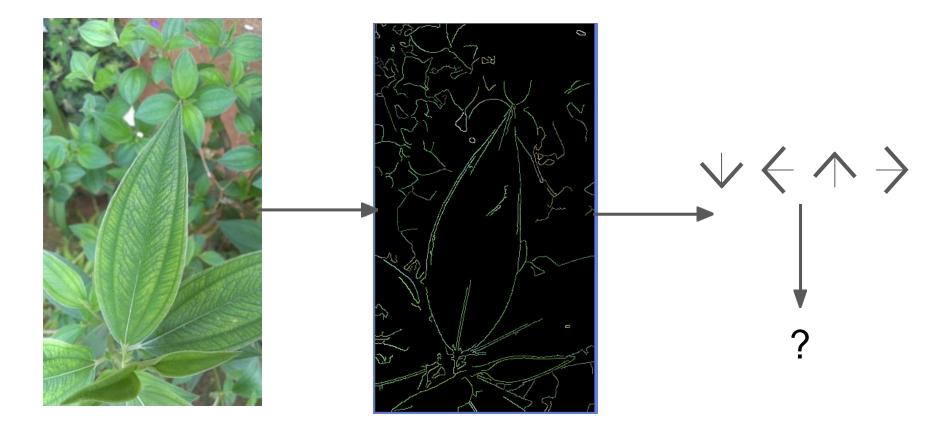
Challenges: Variation

Image Classifier

def classify_image(image):
 # Some magic here?
 return class_label

There is no deterministic, trivial way of selecting correct classes given just an input image

Rule-based Methods



Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning algorithms to train a classifier
- 3. Evaluate the classifier on new images

return test_labels

<pre>def train(images, labels):</pre>	airplane 🛛 🔍 🌠 🦐 📂 🔜 🖙 🏹 ୭	
<pre># Machine learning! return model</pre>	automobile 🎬 🇊 🏐 🎆 🏹 🎲 🕷	
recurn modec	bird 💦 🍋 🎆 🦷 📰 🌾 🔊	
	cat 💦 🐱 🎑 🖉 🔄 🖾 🖾	
<pre>def predict(model, test_images): # Use model to predict labels</pre>	deer 🛛 🚮 🦮 🐳 📝 🛣 🐳	

Example training set

Nearest Neighbor Classifier

First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

Predict the label of the most similar training image

First classifier: Nearest Neighbor

Training data with labels

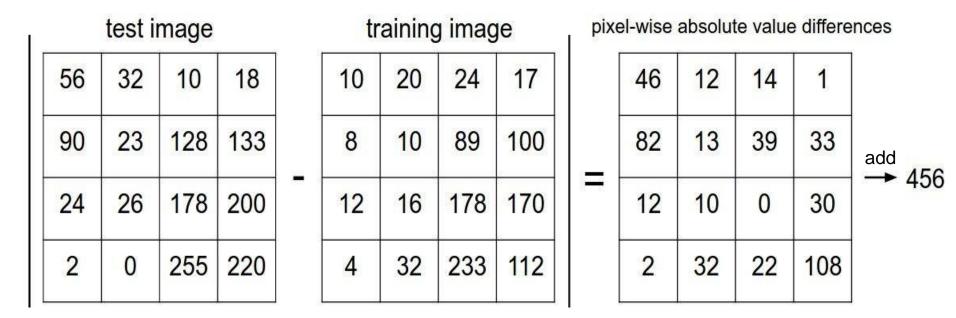
?

query data

Distance Metric

Distance Metric to compare images

L1 distance:
$$d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|$$



```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

find the nearest training image to the i'th test image # using the L1 distance (sum of absolute value differences) distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # get the index with smallest distance Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

Nearest Neighbor classifier

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):

""" X is N x D where each row is an example. Y is 1-dimension of size N """
the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y

def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

Memorize training data

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

def train(self, X, y):

```
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y
```

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num test, dtype = self.ytr.dtype)
```

loop over all test rows
for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min index] # predict the label of the nearest example

return Ypred

For each test image: Find closest train image Predict label of nearest image

Nearest Neighbor classifier

import numpy as np

class NearestNeighbor: def __init__(self): pass

def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

Ans: Train O(1), predict O(N)

This is bad: we want classifiers that are **fast** at prediction; **slow** for training is ok

```
import numpy as np
```

```
class NearestNeighbor:
    def __init__(self):
        pass
```

```
def train(self, X, y):
```

```
""" X is N x D where each row is an example. Y is 1-dimension of size N """
# the nearest neighbor classifier simply remembers all the training data
self.Xtr = X
self.ytr = y
```

```
def predict(self, X):
    """ X is N x D where each row is an example we wish to predict label for """
    num_test = X.shape[0]
    # lets make sure that the output type matches the input type
    Ypred = np.zeros(num_test, dtype = self.ytr.dtype)
```

```
# loop over all test rows
for i in xrange(num_test):
    # find the nearest training image to the i'th test image
    # using the L1 distance (sum of absolute value differences)
    distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
    min_index = np.argmin(distances) # get the index with smallest distance
    Ypred[i] = self.ytr[min_index] # predict the label of the nearest example
```

return Ypred

Nearest Neighbor classifier

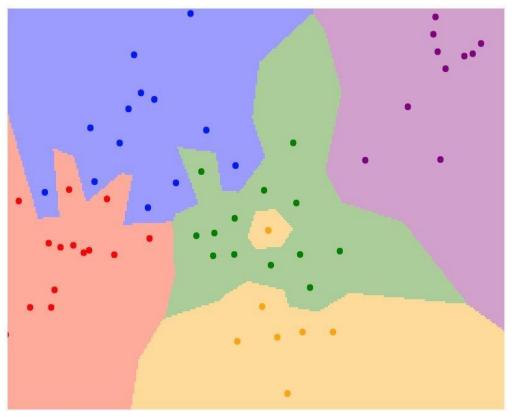
Many methods exist for fast Nearest Neighbor

A good implementation:

https://github.com/facebookresearch/faiss

Johnson et al, "Billion-scale similarity search with GPUs", arXiv 2017

Example

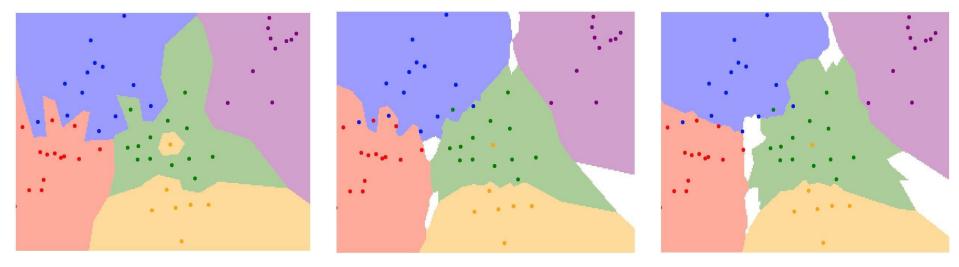


1-nearest neighbor

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html#sphx-glr-auto-examples-neighbors-plot-classification-py

K-Nearest Neighbors

Instead of copying label from nearest neighbor, take **majority vote** from K closest points

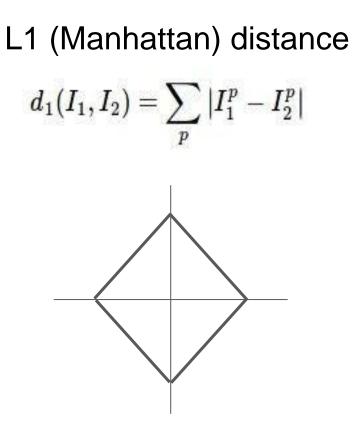


K = 1

K = 3

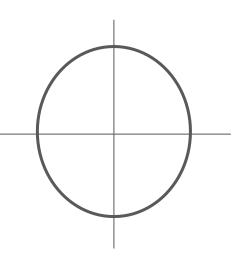
K = 5

K-Nearest Neighbors: Distance Metric



L2 (Euclidean) distance

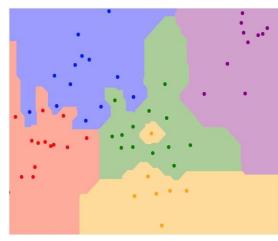
$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

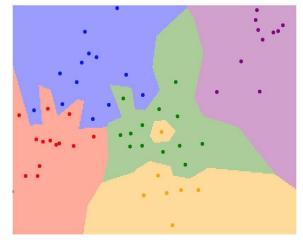
$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



K = 1

L2 (Euclidean) distance

$$d_2(I_1,I_2) = \sqrt{\sum_p \left(I_1^p - I_2^p
ight)^2}$$



K = 1

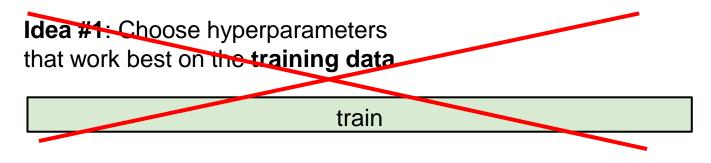
Hyperparameters

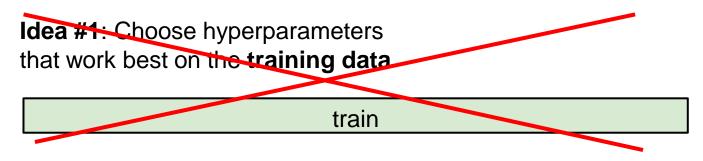
What is the optimal value of **k** to use? What is the optimal **distance metric** to use?

Hyperparameters are choices about the algorithms themselves.

Idea #1: Choose hyperparameters that work best on the **training data**

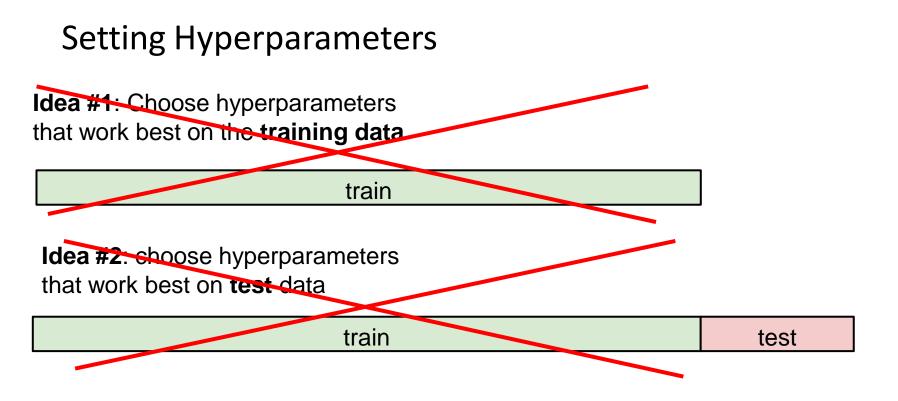
train

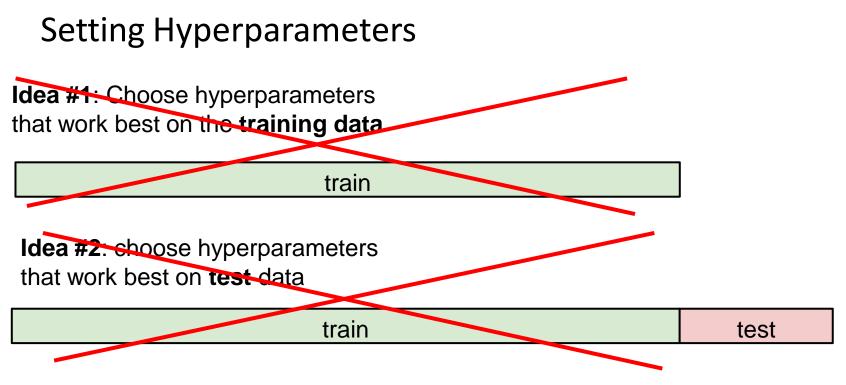




Idea #2: choose hyperparameters that work best on test data

train test





Idea #3: Split data into train, val; choose hyperparameters on val and evaluate on test

train	validation	test
-------	------------	------

train

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Example Dataset: CIFAR10

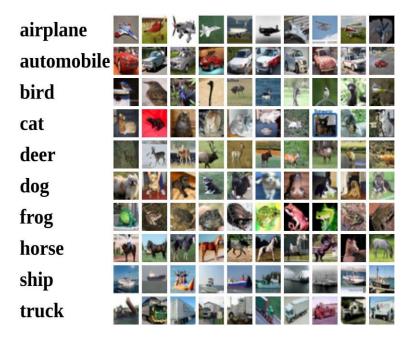
10 classes50,000 training images10,000 testing images

airplane	🔍 🌌 🧺 🗶 🔜 🔜 🕷 🖏	
automobil	💕 😂 🛃 🥌 🤤 🏹 🖏 😂 💥 🏹	
bird	🚔 🐚 🗱 🥇 🚎 🚟 🌾 🔊 💥 💥	
cat	12 💌 🚵 💷 🖉 🔄 🖼 🛣 🚯	
deer	in in 🔌 🛍 🕿 💱 🐨 🚎	
dog	💓 🕌 😤 👅 🎘 🌍 🗶 📩 🖄	
frog	🛃 🗑 🥘 🚭 🥐 🐎 😴 🖉	
horse	👬 🐋 🌠 👥 🐼 📶 🕍 🖉 🔊	
ship	<u></u>	
truck	🔺 🍜 🐌 🚔 🛃 🔍 🖉 🌆 🏠	

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.

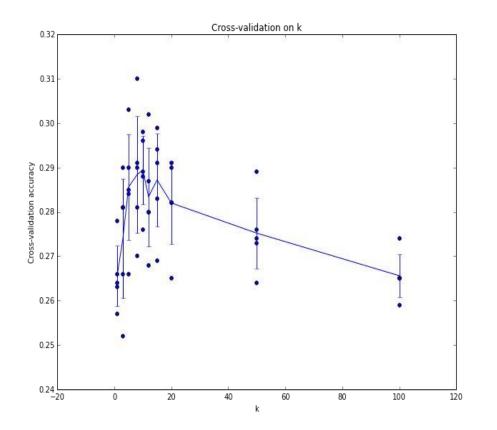
Example Dataset: CIFAR10

10 classes50,000 training images10,000 testing images



Test images and nearest neighbors

Alex Krizhevsky, "Learning Multiple Layers of Features from Tiny Images", Technical Report, 2009.



Example of 5-fold cross-validation for the value of **k**.

Points: single prediction outcomes

Line: mean

Bars: standard deviation

k ~= 7 achieves best performance

kNN Results

kNN Results

K-Nearest Neighbors Summary

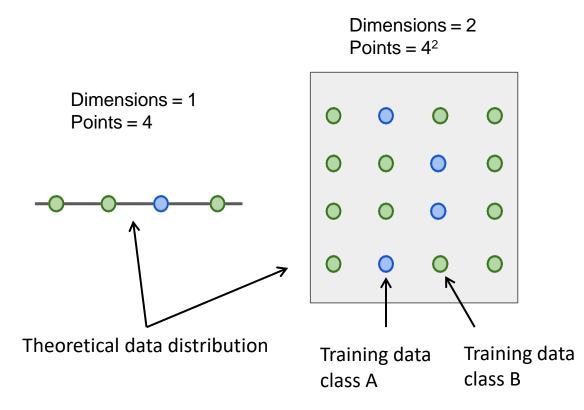
Image classification requires a training set of images and labels. It predicts labels on a test set.

The **k-Nearest Neighbors** classifier predicts labels based on the k nearest training examples

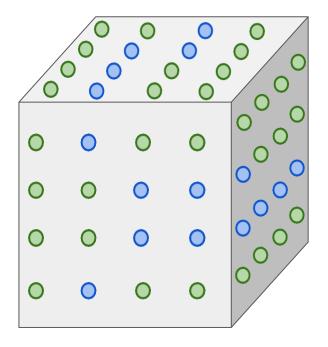
Distance metric and k are hyperparameters

Select hyperparameter values using a validation set

Spatial Coverage Needs Increases with Dimension



Dimensions = 3 Points = 4^3

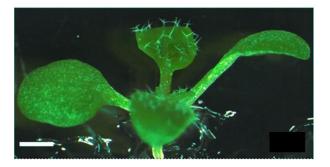


k-Nearest Neighbor Drawbacks

- Distance metrics on pixels are not informative
- Very slow at prediction

Original

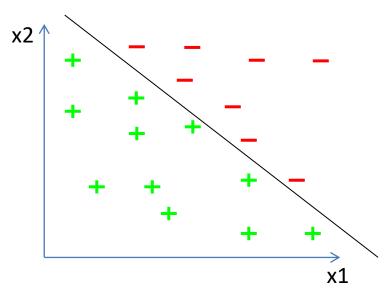
Tinted



Linear Classifier

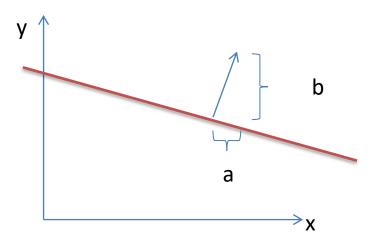
Linear classifiers : Motivation

- kNN produce decision boundaries by calculating them during prediction.
- Can we define a (simple) function during training to define decision boundaries directly?



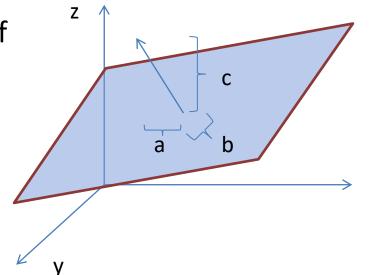
Plane Geometry

- Any line in 2D can be expressed as the set of solutions (x,y) to the equation ax+by+c=0 (an implicit line)
 - ax+by+c > 0 is one side of the line
 - ax+by+c < 0 is the other</p>
 - ax+by+c = 0 is the line itself



Plane Geometry

- In 3D, a (hyper)plane can be expressed as the set of solutions (x,y,z) to the equation ax+by+cz+d=0
 - ax+by+cz+d > 0 is one side of the plane
 - ax+by+cz+d < 0 is the other side</p>
 - ax+by+cz+d = 0 is the plane itself



Х

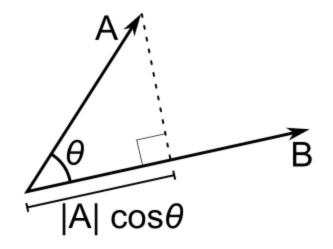
Linear Classifier

• In **d** dimensions,

 $c_0 + c_1^* x_1 + \dots + c_d^* x_d = 0$

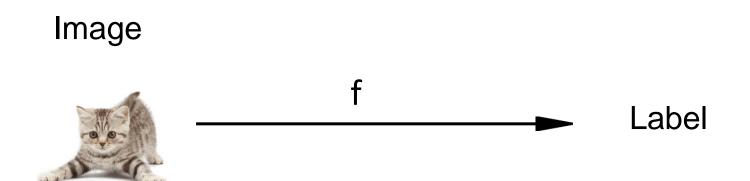
• Abbreviate with dot product:

 $c_0 + c \cdot x = c_0 + c_1^* x_1 + \dots + c_d^* x_d = 0$

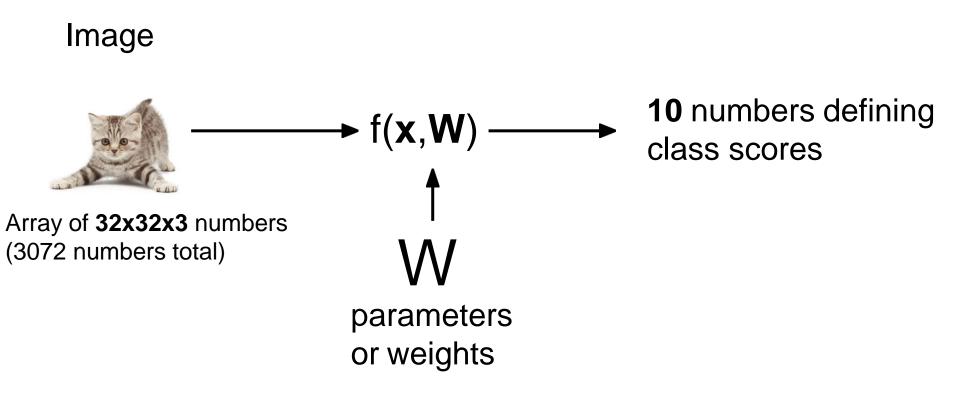


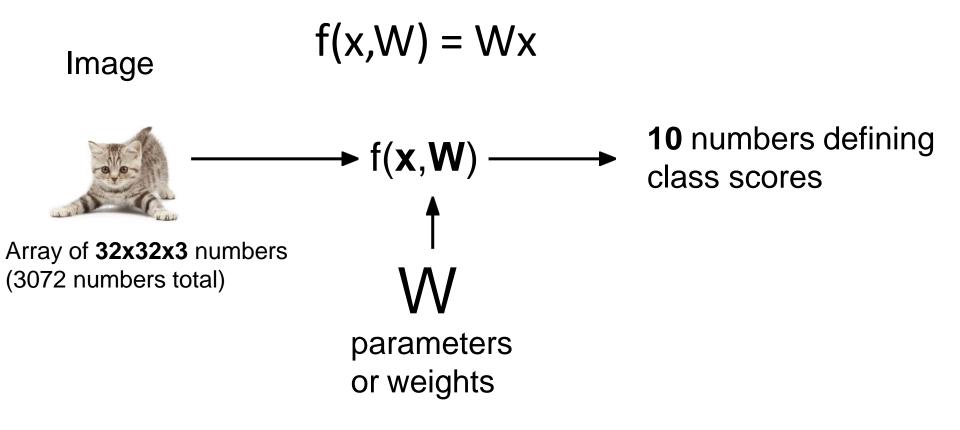
Dot product

Describe relation between image and label



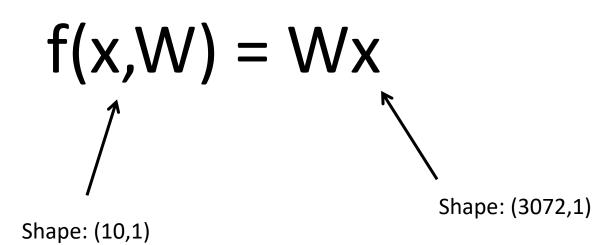
Describe relation between image and label

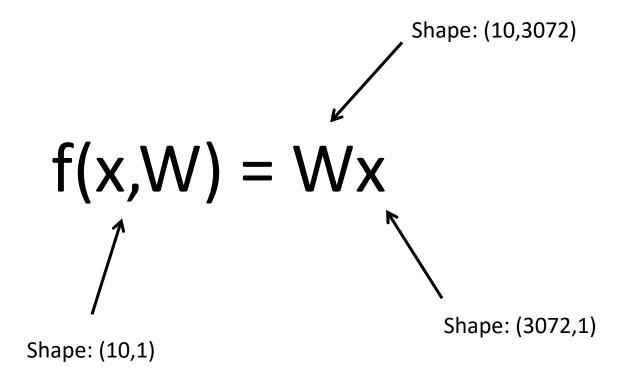


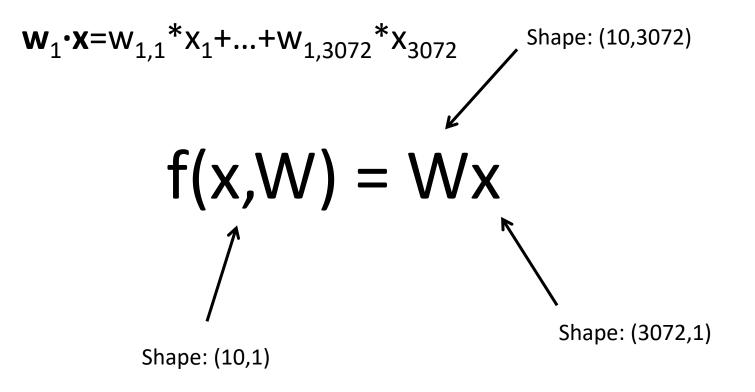


f(x,W) = Wx

Shape: (10,1)







$$w_1 \cdot x = w_{1,1} * x_1 + ... + w_{1,3072} * x_{3072}$$
 Shape: (10,3072)
 $f(x,W) = Wx$
 $f(x,W)$ Shape: (10,1)
Shape: (3072,1)

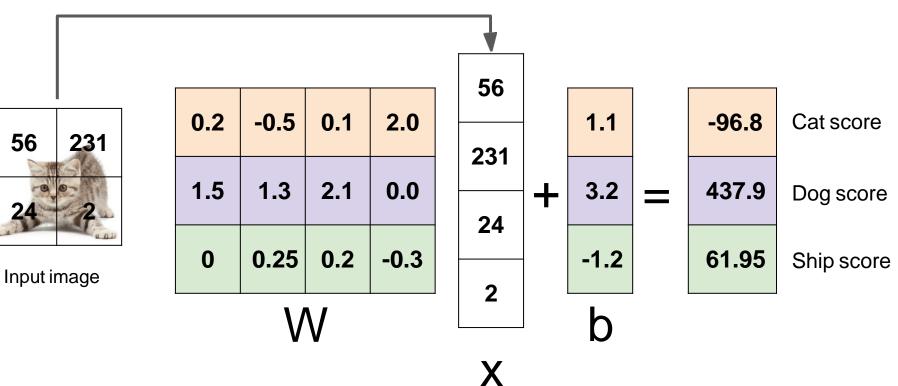
$$w_1 \cdot x = w_{1,1} * x_1 + ... + w_{1,3072} * x_{3072}$$

 $f(x,W) = Wx + b$
 $f(x,W)$ Shape: (10,3072)
 $f(x,W)$ Shape: (3072,1)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Flatten tensors into a vector

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

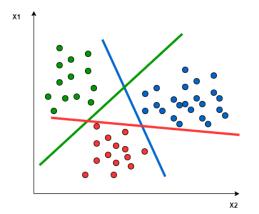


Flatten tensors into a vector

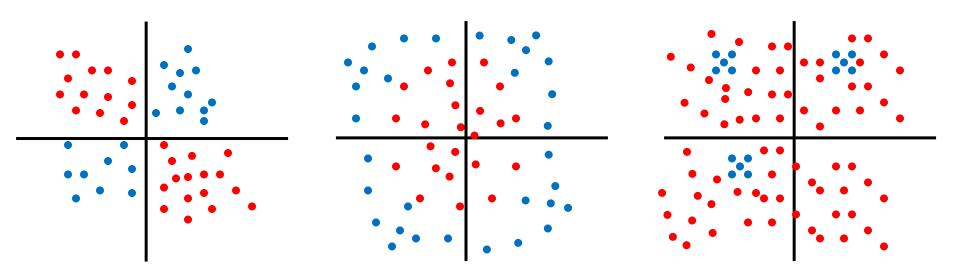
Linear Classifier Predict Efficiently

- Predict fast by generating scores with matrix-vector multiplications

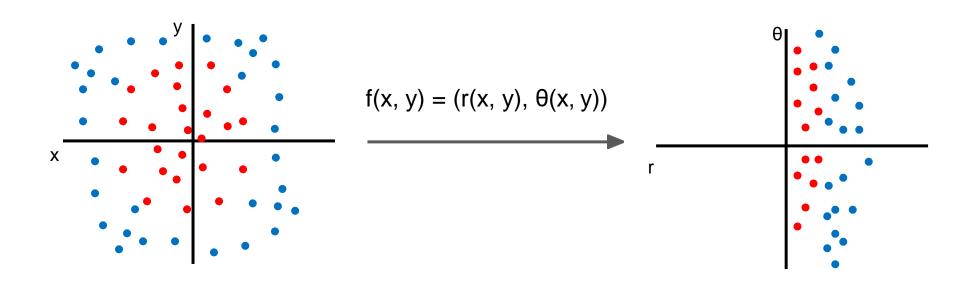
scores = W.dot(image) + b



Difficult cases for linear classifiers

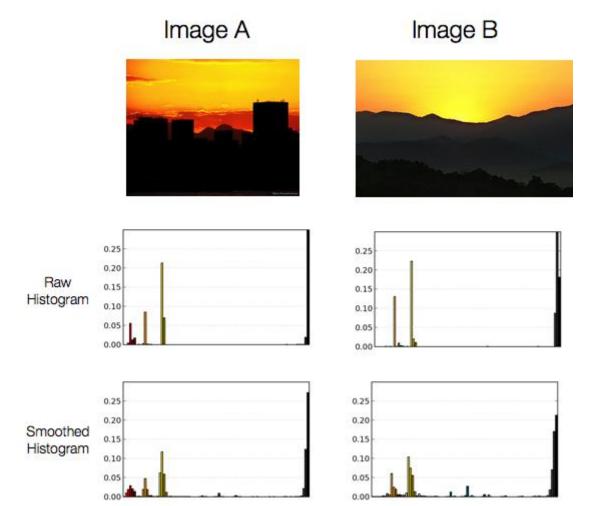


Apply Transformations



Extract features using transformations

Example: Color Histogram

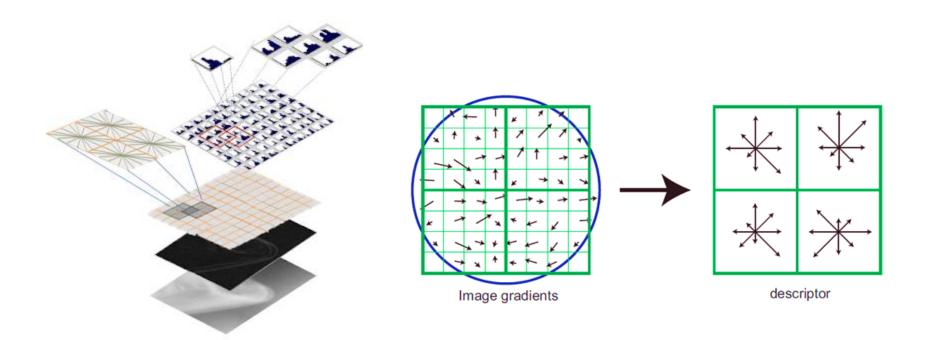


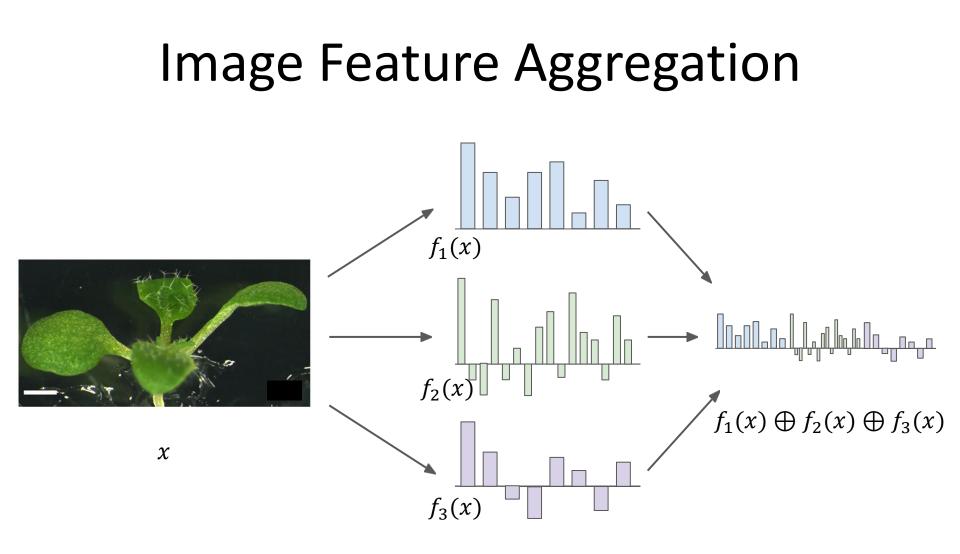
Example: Histogram of Oriented Gradients (HoG)

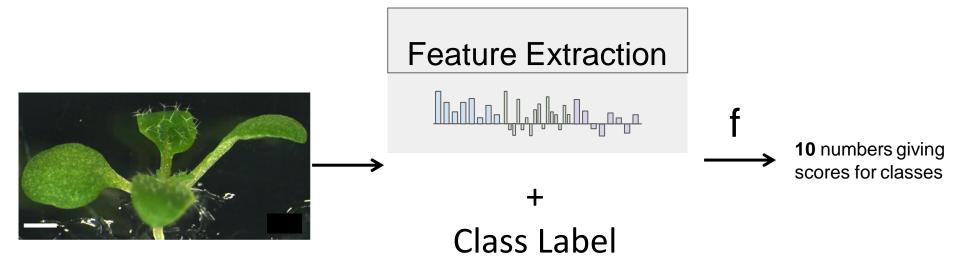
Histogram of Oriented Gradients

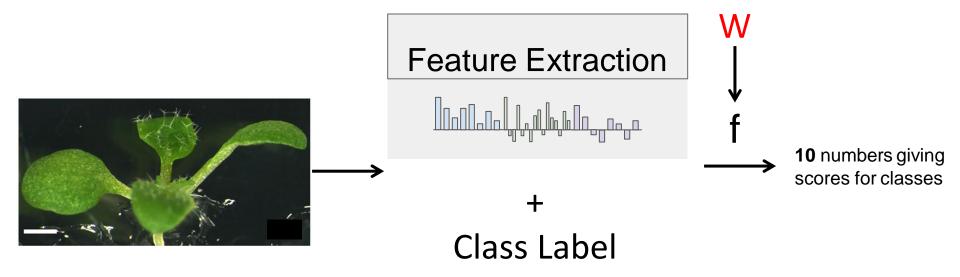
Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

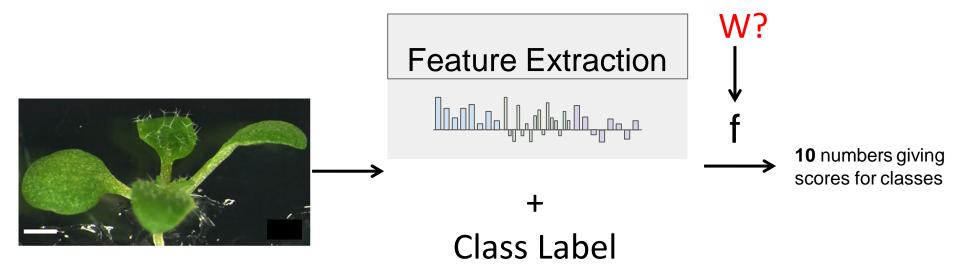
Example: Histogram of Oriented Gradients (HoG)

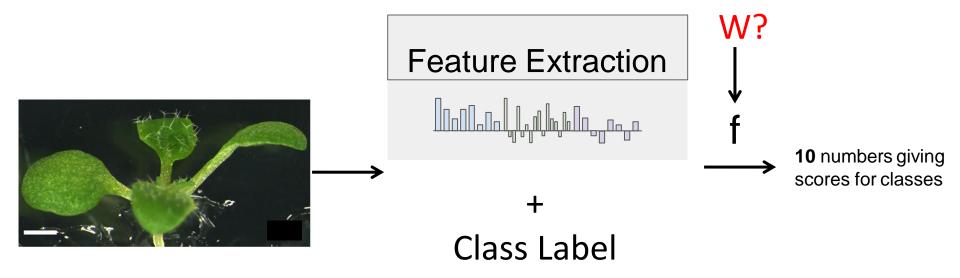






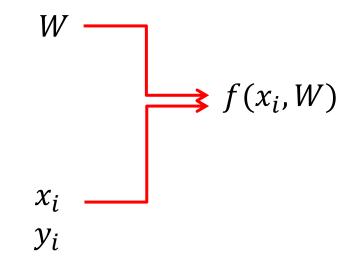




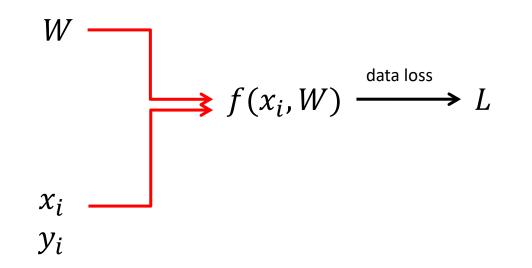


Measure how well a set of values for W classifies an input

How expressive are the values of W?

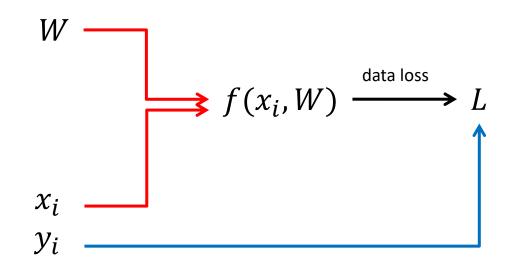


How expressive are the values of W?



L: Metric to assess what loss of data classification our model incurs

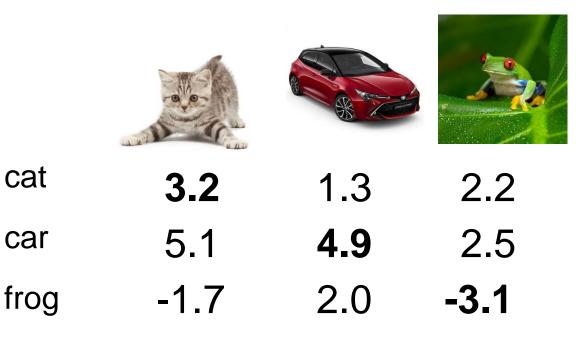
Loss Function



L: Metric to assess what loss of data classification our model incurs

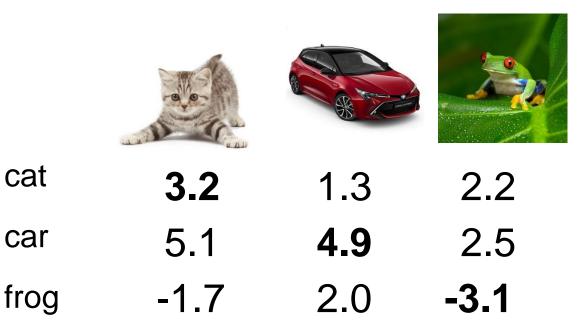
Suppose: 3 training examples, 3 classes. With some W the f(x, W) = Wx are:

A **loss function** measures the performance of a classifier



Suppose: 3 training examples, 3 classes. With some W the f(x, W) = Wx are:

A **loss function** measures the performance of a classifier



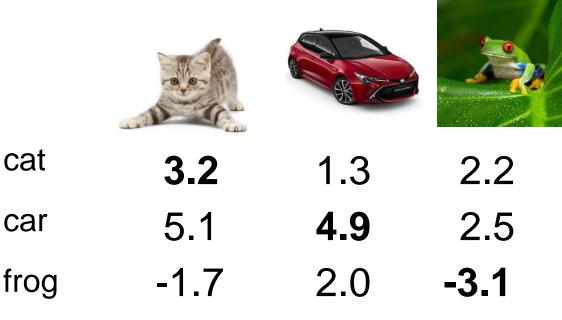
Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x}_i$ is image and $oldsymbol{y}_i$ is (integer) label

Suppose: 3 training examples, 3 classes. With some W the f(x, W) = Wx are:

A **loss function** measures the performance of a classifier



Given a dataset of examples

 $\{(x_i, y_i)\}_{i=1}^N$

Where $egin{array}{c} x_i & ext{is image and} \\ y_i & ext{is (integer) label} \end{array}$

Loss over the dataset is an average of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

f

Multiclass SVM loss:

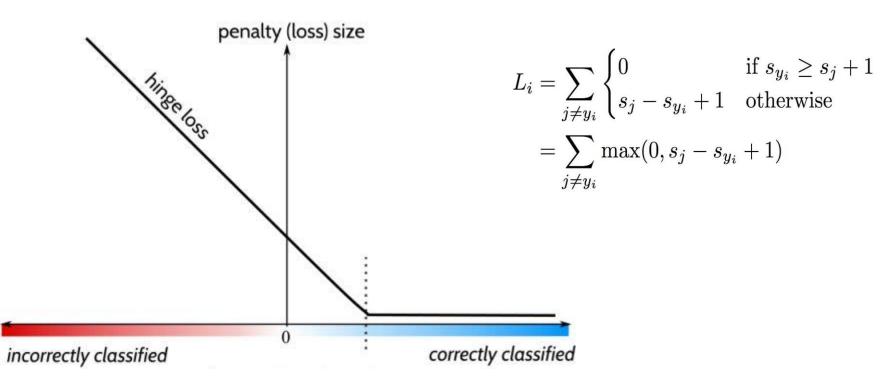
Given an example (x_i, y_i) where $\begin{array}{c} x_i \\ y_i \end{array}$ is the image and where $\begin{array}{c} y_i \\ y_i \end{array}$ is the (integer) label,

using the shorthand for the es vector: $s = f(x_i, W)$

VM loss has the form:

 $\text{if } s_{y_i} \ge s_j + 1$ 0 $s_j - s_{y_i} + 1$ otherwise $\max(0, s_j - s_{y_i} + 1)$ $j \neq y_i$

Hinge loss

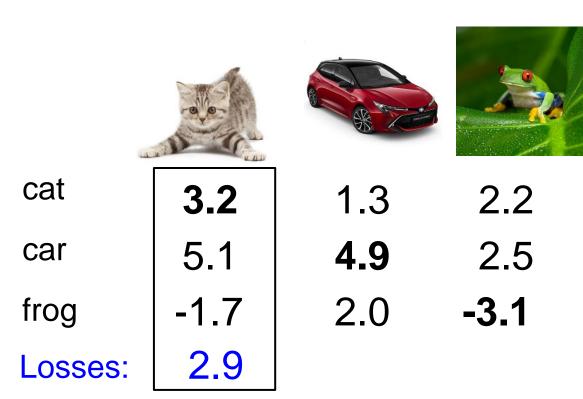


Multiclass SVM loss:

Given an example (x_i, y_i) where $\begin{array}{c} x_i \\ y_i \end{array}$ is the image and where $\begin{array}{c} y_i \\ y_i \end{array}$ is the (integer) label,

and using the notation for the scores vector: $s = f(x_i, W)$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

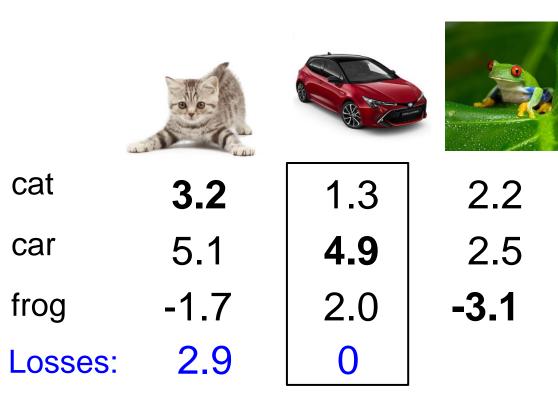


Multiclass SVM loss:

Given an example (x_i, y_i) where $\begin{array}{c} x_i \\ y_i \end{array}$ is the image and where $\begin{array}{c} y_i \\ y_i \end{array}$ is the (integer) label,

and using the notation for the scores vector: $s = f(x_i, W)$

$$\begin{aligned} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 5.1 - 3.2 + 1) \\ &+ \max(0, -1.7 - 3.2 + 1) \\ &= \max(0, 2.9) + \max(0, -3.9) \\ &= 2.9 + 0 \\ &= 2.9 \end{aligned}$$



Multiclass SVM loss:

Given an example (x_i, y_i) where $\begin{array}{c} x_i \\ y_i \end{array}$ is the image and where $\begin{array}{c} y_i \\ y_i \end{array}$ is the (integer) label,

and using the notation for the scores vector: $s = f(x_i, W)$

$$\begin{split} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 1.3 - 4.9 + 1) \\ &+ \max(0, 2.0 - 4.9 + 1) \\ &= \max(0, -2.6) + \max(0, -1.9) \\ &= 0 + 0 \\ &= 0 \end{split}$$

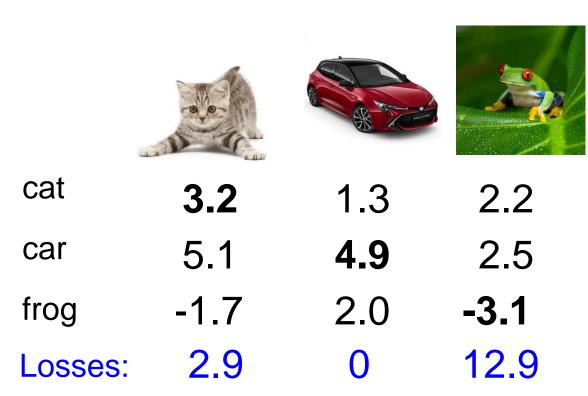


Multiclass SVM loss:

Given an example (x_i, y_i) where $\begin{array}{c} x_i \\ y_i \end{array}$ is the image and where $\begin{array}{c} y_i \\ y_i \end{array}$ is the (integer) label,

and using the notation for the scores vector: $s = f(x_i, W)$

$$\begin{aligned} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 2.2 - (-3.1) + 1) \\ &+ \max(0, 2.5 - (-3.1) + 1) \\ &= \max(0, 6.3) + \max(0, 6.6) \\ &= 6.3 + 6.6 \\ &= 12.9 \end{aligned}$$



Multiclass SVM loss:

Given an example (x_i, y_i) where $\begin{array}{c} x_i \\ y_i \end{array}$ is the image and where $\begin{array}{c} y_i \\ y_i \end{array}$ is the (integer) label,

and using the notation for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

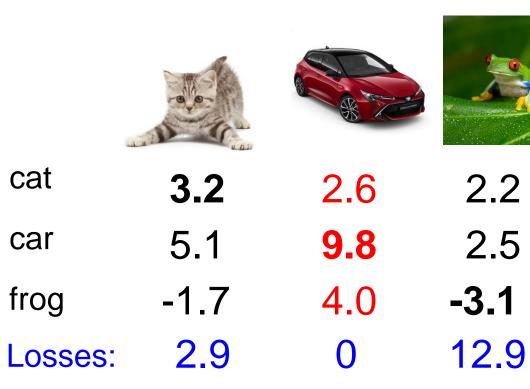
- $L = rac{1}{N} \sum_{i=1}^N L_i$
- L = (2.9 + 0 + 12.9)/3 = **5.27**

Multiclass SVM Loss: Example code

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L_i_vectorized(x, y, W):
    scores = W.dot(x)
    margins = np.maximum(0, scores - scores[y] + 1)
    margins[y] = 0
    loss_i = np.sum(margins)
    return loss_i
```

Suppose we increase W for class 2 twofold



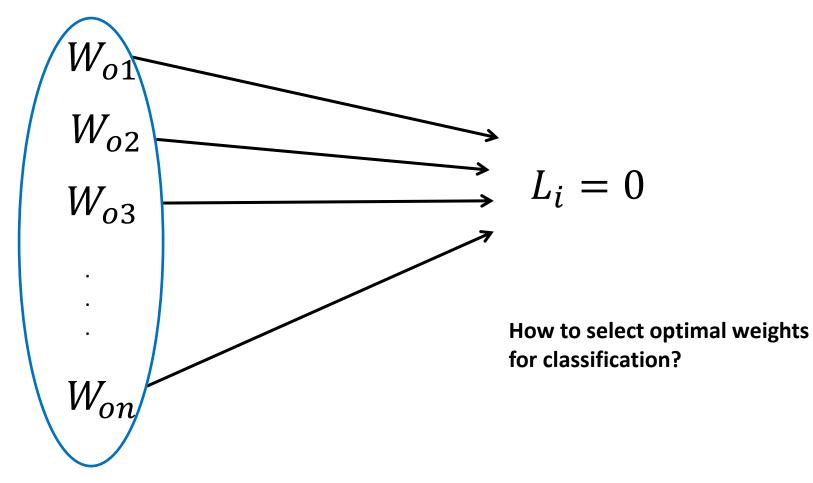
 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Before:

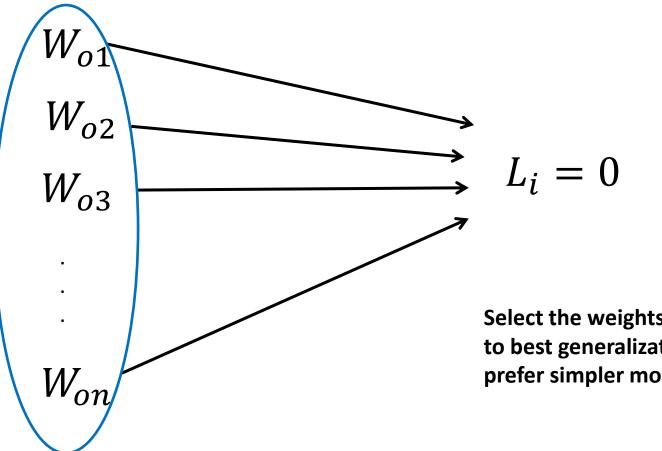
- $= \max(0, 1.3 4.9 + 1) \\ + \max(0, 2.0 4.9 + 1)$
- $= \max(0, -2.6) + \max(0, -1.9)$
- = 0 + 0
- = 0

With W twice as large: = max(0, 2.6 - 9.8 + 1) +max(0, 4.0 - 9.8 + 1)= max(0, -6.2) + max(0, -4.8)= 0 + 0= 0

Set of weights *W* that compute 0 loss for a class



Set of weights *W* that compute 0 loss for a class



Select the weights that lead to best generalization, i.e. prefer simpler models.

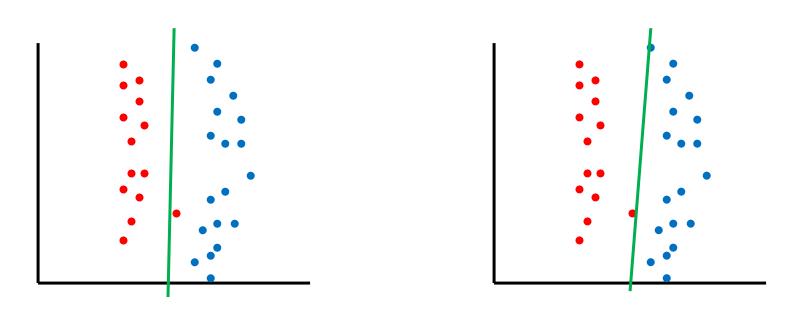
$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$$

Data loss: Model predictions should match training data

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

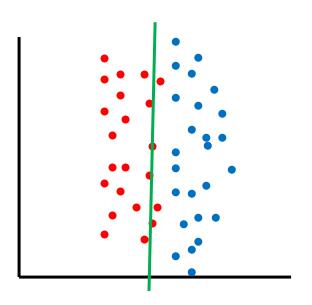
Regularization: Prevent the model from doing *too* well on training data

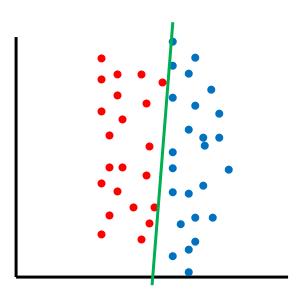


high λ

small λ

Regularization: Future Data Ex. 1

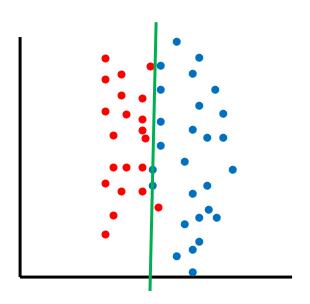


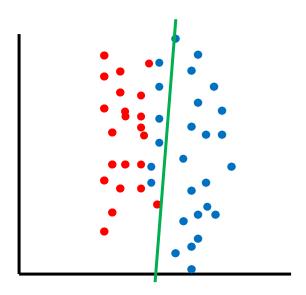


high λ

small λ

Regularization: Future Data Ex. 2





high λ

small λ

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$ L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (L1+L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

L2 regularization: $R(W) = \sum_{k} \sum_{l} W_{k,l}^2$ L1 regularization: $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ Elastic net (L1+L2): $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

More complex:

Dropout

Batch normalization

Stochastic depth, fractional pooling, etc

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1] \ w_1 = [1, 0, 0, 0]$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

 $w_2 = \left[0.25, 0.25, 0.25, 0.25
ight]$

$$w_1^T x = w_2^T x = 1$$

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1]$$

 $w_1 = [1, 0, 0, 0]$

L2 Regularization

 $R(W) = \sum_k \sum_l W_{k,l}^2$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

L2 regularization prefers evenly spread weights close to 0

$$w_1^T x = w_2^T x = 1$$

scores = unnormalized log probabilities of the classes.

$$s=f(x_i;W)$$

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $oldsymbol{s}=f(x_i;W)$

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where

$$s = f(x_i; W)$$

Softmax function

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where

$$s=f(x_i;W)$$

$$3.2 \rightarrow 0.2 \quad \Rightarrow 0.2 \quad \text{setting of the set o$$

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $oldsymbol{s}=f(x_i;W)$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

scores = unnormalized log probabilities of the classes.

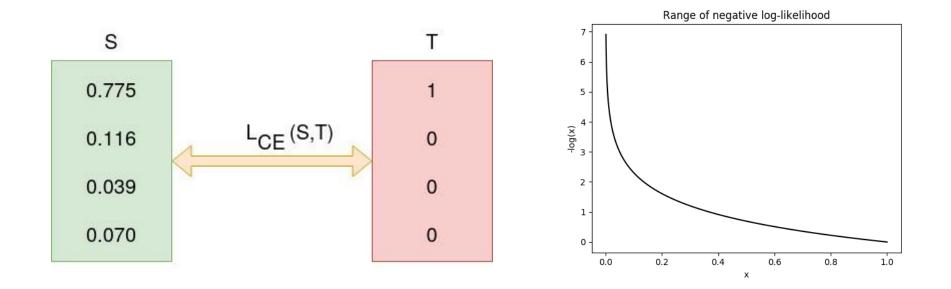
$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $oldsymbol{s}=f(x_i;W)$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

in summary:
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Cross-Entropy Loss $L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$

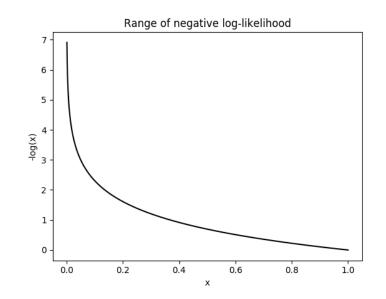


Cross-Entropy Loss $L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$

Multiplying many probabilities/likelihood may lead to very small numbers: e.g. $0.9*0.1*0.01 = 0.0009 \rightarrow$ this is **undesirable**

To avoid this we can express products as **sums** by using the **log function**:

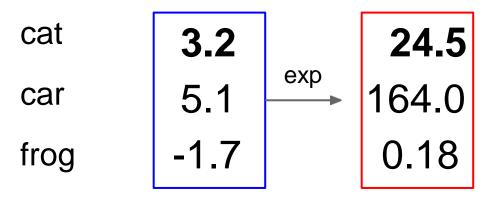
 $\log(a \cdot b) = \log(a) + \log(b)$



$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

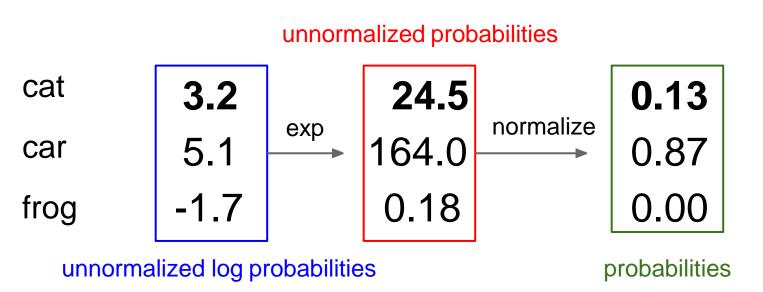
unnormalized log probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

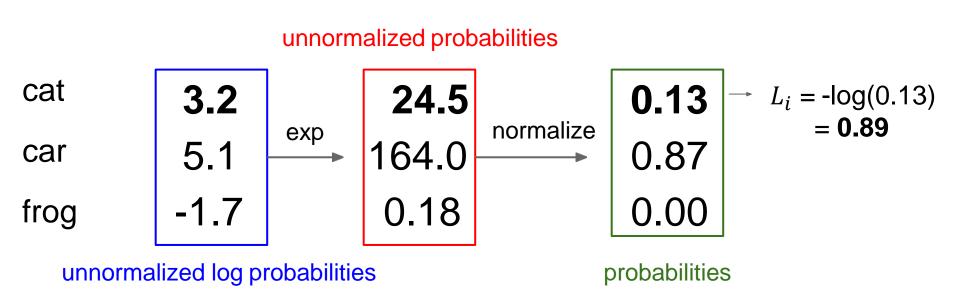


unnormalized log probabilities

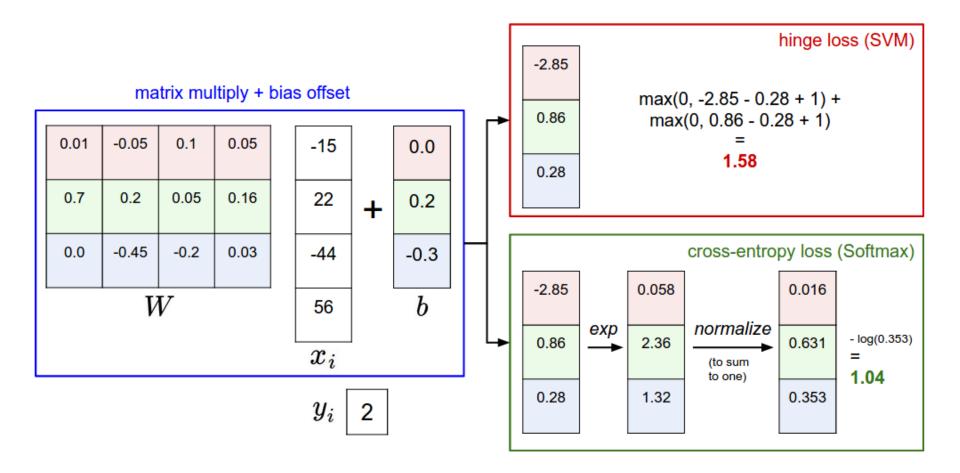
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$



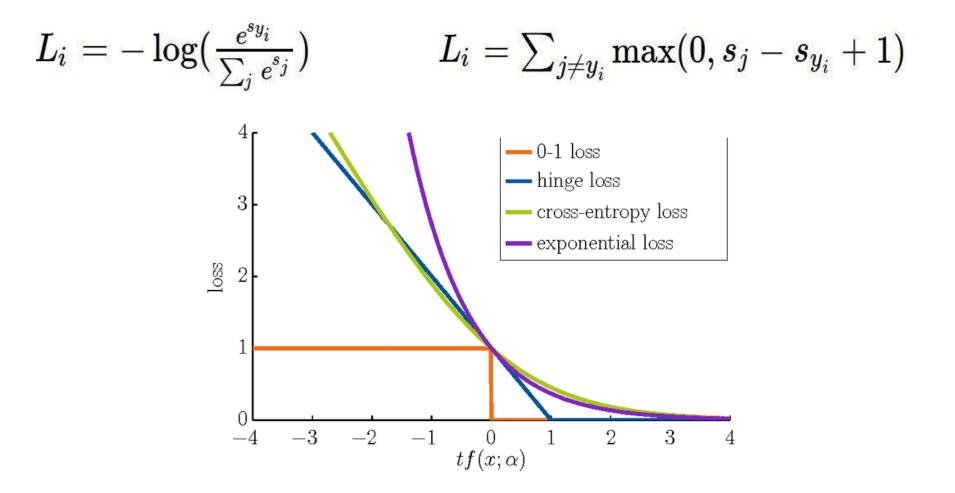
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$



Softmax vs. SVM



Softmax vs. SVM



Summary

- We have some dataset of (x,y)
- We have a score function:
- We have a loss function:

$$s=f(x;W) \stackrel{ ext{e.g.}}{=} Wx$$

