Deep Learning

First classifier: Nearest Neighbor

```
def train(images, labels):
    # Machine learning!
    return model
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Memorize all data and labels

Predict the label
\longrightarrow of the most similar training image

Parametric Approach: Linear Classifier

Image

$$
f(x, W)=W x
$$

10 numbers defining class scores

parameters or weights

Loss Function

L: Metric to assess what loss of data classification our model incurs

Hinge loss

Softmax Classifier (Multinomial Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

> scores = unnormalized log probabilities of the classes.

$$
s=f\left(x_{i} ; W\right)
$$

Softmax Classifier (Multinomial Logistic Regression)

scores $=$ unnormalized log probabilities of the classes.

$$
\boldsymbol{P}\left(\boldsymbol{Y}=k \mid \boldsymbol{X}=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}}
$$

where
$s=f\left(x_{i} ; W\right)$

Softmax Classifier (Multinomial Logistic Regression)

scores $=$ unnormalized log probabilities of the classes.

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \text { where } \quad s=f\left(x_{i} ; W\right)
$$

Softmax function

Softmax Classifier (Multinomial Logistic Regression)

> scores = unnormalized log probabilities of the classes.

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \text { where } \quad s=f\left(x_{i} ; W\right)
$$

Softmax Classifier (Multinomial Logistic Regression)

scores $=$ unnormalized log probabilities of the classes.

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \text { where } \quad s=f\left(x_{i} ; W\right)
$$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

Softmax Classifier (Multinomial Logistic Regression)

scores $=$ unnormalized log probabilities of the classes.

$$
P\left(Y=k \mid X=x_{i}\right)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \text { where } \quad s=f\left(x_{i} ; W\right)
$$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$
L_{i}=-\log P\left(Y=y_{i} \mid X=x_{i}\right)
$$

$$
\text { in summary: } \quad L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

Cross-Entropy Loss
 $L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)$

Cross-Entropy Loss
 $$
L_{i}=-\log \left(\frac{e^{s_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

Multiplying many probabilities/likelihood may
lead to very small numbers:
e.g. $0.9^{*} 0.1^{*} 0.01=0.0009 \rightarrow$ this is undesirable

To avoid this we can express products as sums by using the log function:

$$
\log (a \cdot b)=\log (a)+\log (b)
$$

Range of negative log-likelihood

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

cat	
car	
frog	3.2 5.1 -1.7

unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized probabilities

cat
car
frog
:---:
5.1
-1.7
---:
164.0
0.18

unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized probabilities

Softmax Classifier (Multinomial Logistic Regression)

$$
L_{i}=-\log \left(\frac{e^{s_{i}}}{\sum_{j} e^{s_{j}}}\right)
$$

unnormalized probabilities

cat	3.2		24.5		0.13	$L_{i}=-\log (0.13)$
car	5.1	exp	164.0	normalize	0.87	
frog	-1.7		0.18		0.00	
unnormalized log probabilities \quad probabilities $L=\frac{1}{N} \sum_{i=1}^{N} L_{i}$						

Softmax vs. SVM

Softmax vs. SVM

$$
L_{i}=-\log \left(\frac{e^{s y_{j}}}{\sum_{j} e^{e_{j}}}\right) \quad L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)
$$

Summary

- We have some dataset of (x,y)
- We have a score function:

$$
s=f(x ; W) \stackrel{\text { e.g. }}{=} W x
$$

- We have a loss function:

$$
\begin{array}{ll}
L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \\
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) & \text { SVM } \\
& W \\
L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Complete loss } & \begin{array}{l}
x_{i} \\
y_{i}
\end{array} \square
\end{array}
$$

Summary

- We have some dataset of (x,y)
- We have a score function:

$$
s=f(x ; W) \stackrel{\text { e.g. }}{=} W x
$$

- We have a loss function:

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right) \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Complete loss }
\end{aligned}
$$

optimization

Optimization

$$
w^{*}=\arg \min _{w} L(w)
$$

Idea: Follow the slope

In 1-dimension, the derivative of a function gives the slope:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Idea: Follow the slope

In 1-dimension, the derivative of a function gives the slope:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In multiple dimensions, the gradient is the vector of partial derivatives along each dimension

The slope in any direction is the dot product of the direction with the gradient The direction of steepest descent is the negative gradient

Gradient ∇f in 2D

- The gradient of a scalar-valued differentiable function f of several variables, is a vector-valued function $\nabla f: R^{n} \rightarrow R^{n}$ whose value at a point is a tangent vector to f.

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

where \mathbf{i}, \mathbf{j} are the standard unit vectors in the directions of the x, y coordinates

Example

```
x = y = np.linspace(-10., 10., 41)
xv, yv = np.meshgrid(x, y, indexing='ij')
fv = h0/(1 + (xv**2+yv**2)/(R**2)) # Some function
```


Example

Example

ax.plot_surface(xv, yv, fv, cmap='jet')

Gradient Computation ∇f

dhdx, dhdy = np.gradient(fv) \# dh/dx, dh/d

gradient

gradient + contour

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1
-1.5,
$0.33, . .$.
loss 1.25347
gradient dL/dW:
[?,
?,
?,
?,
?,
?,
?,
?,
?,...]
current W:
[0.34
-1.11,
0.78 ,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
$\mathbf{W}+\mathbf{h}($ first dim):
[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25322
gradient dL/dW:
[?,
?,
?,
?,
?,
?,
?,
?,
?,...]
current W:
[0.34,
-1.11,
0.78 ,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (first dim):
[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25322
gradient dL/dW:
?,
?,
(1.25322-1.25347)/0.0001

$$
=-2.5
$$

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

?,
?,...]
current W:
[0.34,
-1.11,
0.78 ,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
$\mathbf{W}+\mathbf{h}($ second dim):
[0.34,
-1.11 + 0.0001,
0.78 ,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25353
gradient dL/dW:
[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,...]
current W:
[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
$\mathbf{W}+\mathbf{h}($ second dim):
[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25353
gradient dL/dW:

$$
\left.\begin{array}{c}
{[-2.5,} \\
0.6, \\
?, \uparrow \\
?,
\end{array}\right] \begin{gathered}
\begin{array}{l}
(1.25353-1.25347) / 0.0001 \\
=0.6 \\
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
!, \ldots]
\end{array}
\end{gathered}
$$

current W:
[0.34,
-1.11,
0.78 ,
0.12 ,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
$\mathbf{W}+\mathbf{h}$ (third dim):
[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
gradient dL/dW:
$[-2.5$,
0.6,
$?$,
$?$,
$?$,
$?$,
$?$,
$?$,
$?, \ldots]$

current W:

[0.34,
-1.11,
0.78 ,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
$\mathbf{W}+\mathbf{h}($ third dim):
[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
gradient dL/dW:

$$
\begin{gathered}
{[-2.5,} \\
0.6, \\
0.0, \\
?, \uparrow \\
?, \\
\hline
\end{gathered}
$$

current $\mathbf{W}:$	$\mathbf{W}+\mathbf{h}$ (third dim):
$[0.34$,	$[0.34$,
-1.11,	-1.11,
0.78,	$0.78+\mathbf{0 . 0 0 0 1}$,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
$0.33, \ldots]$	$0.33, \ldots]$
loss 1.25347	loss 1.25347

Loss is a function of W: Analytic Gradient

$$
\begin{aligned}
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& s=f(x ; W)=W x
\end{aligned}
$$

want $\nabla_{W} L$
Use calculus to compute an analytic gradient

current W:

gradient dL/dW:

$[0.34$,		$[-2.5$,
-1.11,	$\mathrm{dL} / \mathrm{dW}=\ldots$	0.6,
0.78,	(some function	0,
0.12,	data and W)	0.2,
0.55,	0.7,	
2.81,	-0.5,	
-3.1,	1.1,	
-1.5,	1.3,	
$0.33, \ldots]$	$-2.1, \ldots]$	

loss 1.25347

current W:

gradient dL/dW:

$[0.34$,		$[-2.5$,
-1.11,	$\mathrm{dL} / \mathrm{dW}=\ldots$	0.6,
0.78,	(some function	0,
0.12,	data and W)	0.2,
0.55,		0.7,
2.81,	-0.5,	
-3.1,	(In practice we will compute	1.1,
-1.5,	$\mathrm{dL} / \mathrm{dW}$ using backpropagation)	1.3,
$0.33, \ldots]$		$-2.1, \ldots]$

loss 1.25347

Computing Gradients

Numeric gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

```
def grad_check_sparse(f, x, analytic_grad, num_checks=10, h=1e-7):
    """
    sample a few random elements and only return numerical
    in this dimensions.
    """
```


Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone
torch. autograd.gradcheck (func, inputs, eps=1e-06, atol=1e-05, rtol=0.001, raise_exception=True, check_sparse_nnz=False, nondet_tol=0.0)

Check gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs that are of floating point type and with requires_grad=True .

The check between numerical and analytical gradients uses allclose().

Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

```
torch.autograd.gradgradcheck(func, inputs, grad_outputs=None, eps=1e-06, atol=1e-
05,rtol=0.001, gen_non_contig_grad_outputs=False, raise_exception=True, nondet_tol=0.0)
```

Check gradients of gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs and grad_outputs that are of floating point type and with requires_grad=True.

This function checks that backpropagating through the gradients computed to the given grad_outputs are correct.

Gradient Descent

```
Iteratively step in the direction of the negative gradient (direction of local steepest descent)
```

```
# Vanilla gradient descent
```


Vanilla gradient descent

w = initialize_weights()
w = initialize_weights()
for t in range(num_steps):
for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)
dw = compute_gradient(loss_fn, data, w)
w -= learning_rate * dw

```
    w -= learning_rate * dw
```


Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

Gradient Descent

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
    dw = compute_gradient(loss_fn, data, w)
    w -= learning_rate * dw
```


Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate
negative gradient direction original W

Gradient Descent

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
    dw = compute_gradient(loss_fn, data, w)
    w -= learning_rate * dw
```


Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

Batch Gradient Descent

Full sum expensive

$$
L(W)=\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W)
$$

$$
\nabla_{W} L(W)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
$$

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common
\# Stochastic gradient descent
w = initialize_weights()
for t in range(num_steps):
minibatch = sample_data(data, batch_size) dw = compute_gradient(loss_fn, minibatch, w) w -= learning_rate * dw

Hyperparameters:

- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\mathbb{E}_{(x, y) \sim p_{\text {data }}}[L(x, y, W)]+\lambda R(W) \\
& \approx \frac{1}{N} \sum_{i=1}^{N} L\left(x_{i}, y_{i}, W\right)+\lambda R(W)
\end{aligned}
$$

Think of loss as an
expectation over the full data distribution $p_{\text {data }}$

Approximate
expectation via sampling

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\mathbb{E}_{(x, y) \sim p_{\text {data }}}[L(x, y, W)]+\lambda R(W) \\
& \approx \frac{1}{N} \sum_{i=1}^{N} L\left(x_{i}, y_{i}, W\right)+\lambda R(W)
\end{aligned}
$$

Think of loss as an expectation over the full data distribution $p_{\text {data }}$

Approximate
expectation via sampling

$$
\left.\nabla_{W} L(W)=\nabla_{W} \mathbb{E}_{(x, y) \sim p_{\text {data }}}[L(x, y, W)]+\lambda \nabla_{W} R(W)\right)
$$

$$
\approx \sum_{i=1}^{N} \nabla_{W} L_{W}\left(x_{i}, y_{i}, W\right)+\nabla_{W} R(W)
$$

Problems with SGD

What if loss changes quickly in one direction and slowly in another?

Loss function contour with minimum in the center

Problems with SGD

What if loss changes quickly in one direction and slowly in another?
Very slow progress along shallow dimension, jitter along steep
direction

Loss function contour with minimum in the center

Problems with SGD

What if the loss function has a local minimum or saddle point?

Problems with SGD

What if the loss function has a local minimum or saddle point?

Zero gradient, gradient descent gets stuck

Problems with SGD

Gradients are calculated from

 minibatches \rightarrow they can be noisy$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)
\end{aligned}
$$

SGD

$$
x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

for t in range(num_steps): $\mathrm{dw}=$ compute_gradient(w) w -= learning_rate * dw

SGD + Momentum

SGD

$x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)$

SGD+Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}+\nabla f\left(x_{t}\right) \\
& x_{t+1}=x_{t}-\alpha v_{t+1}
\end{aligned}
$$

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

SGD + Momentum

Local Minima

Saddle points

Gradient Noise

AdaGrad

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared += dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

"Per-parameter learning rates" or "adaptive learning rates"

AdaGrad

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared += dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```


Progress along "steep" directions is damped; progress along "flat" directions is accelerated

RMSProp

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared += dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
    \downarrow
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```


RMSProp

SGD
RMSProp

RMSProp Noise

— SGD

RMSProp

SGD+Momentum

Adam: RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
```


Adam: RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
\[
\begin{aligned}
& v=0 \\
& \text { for } t \text { in range(num_steps): } \\
& d w=\text { compute_gradient }(w) \\
& \begin{array}{l}
\mathrm{v}=\text { rho } * \mathrm{v}+\mathrm{dw} \\
\mathrm{w}-=\text { learning_rate } * \mathrm{v}
\end{array}
\end{aligned}
\]
```


Adam: RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(num_steps):
    dw = compute_gradient(w)
moment1 = beta1 * moment1 + (1 - beta1) * dw
moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w -= learning_rate * moment1// (moment2.sqrt() + 1e-7)
```

Adam
Momentum
AdaGrad / RMSProp

```
grad_squared = 0
```

for t in range(num_steps):
dw = compute_gradient(w)
RMSProp
grad_squared = decay_rate $*$ grad_squared + (1 - decay_rate) $* \mathrm{dw} * \mathrm{dw}$
w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)

Adam: RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    moment1_unbias = moment1 / (1 - beta1 ** t)
    moment2_unbias = moment2 / (1 - beta2 ** t)
```


Momentum

AdaGrad / RMSProp
Bias correction

```
    w -= learning_rate * moment1_unbias / (moment2_unbias.sqrt() + 1e-7)
```

Bias correction for the fact that first and second moment estimates start at zero

Adam: RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    moment1_unbias = moment1 / (1 - beta1 ** t)
    moment2_unbias = moment2 / (1 - beta2 ** t)
    w -= learning_rate * moment1_unbias / (moment2_unbias.sqrt() + 1e-7)
```

Bias correction for the fact that first and second moment estimates start at zero

Adam example values: beta1 $=0.9$, beta2 $=0.999$, and learning_rate $=1 e-3,5 e-4,1 e-4$

Adam

SGD

SGD+Momentum

RMSProp

Adam

Optimization Algorithm Comparison

Algorithm	Tracks first moments (Momentum)	Tracks second moments (Adaptive learning rates)	Leaky second moments	Bias correction for moment estimates
SGD	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
SGD+Momentum	$\boldsymbol{\checkmark}$	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
AdaGrad	\boldsymbol{x}	$\boldsymbol{\checkmark}$	\boldsymbol{x}	\boldsymbol{x}
RMSProp	\boldsymbol{x}	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	\boldsymbol{x}
Adam	\boldsymbol{l}	$\boldsymbol{\checkmark}$	\boldsymbol{l}	$\boldsymbol{\checkmark}$

So far: First-Order Optimization

So far: First-Order Optimization

Second-Order Optimization

1. Use gradient and Hessian to make quadratic approximation

Loss

Second-Order Optimization

1. Use gradient and Hessian to make quadratic approximation

Loss

Second-Order Optimization

Second-Order Taylor Expansion:

$$
L(w) \approx L\left(w_{0}\right)+\left(w-w_{0}\right)^{\top} \nabla_{w} L\left(w_{0}\right)+\frac{1}{2}\left(w-w_{0}\right)^{\top} \mathbf{H}_{w} L\left(w_{0}\right)\left(w-w_{0}\right)
$$

Solving for the critical point we obtain the Newton parameter update:

$$
w^{*}=w_{0}-\mathbf{H}_{w} L\left(w_{0}\right)^{-1} \nabla_{w} L\left(w_{0}\right)
$$

Second-Order Optimization

Second-Order Taylor Expansion:

$$
L(w) \approx L\left(w_{0}\right)+\left(w-w_{0}\right)^{\top} \nabla_{w} L\left(w_{0}\right)+\frac{1}{2}\left(w-w_{0}\right)^{\top} \mathbf{H}_{w} L\left(w_{0}\right)\left(w-w_{0}\right)
$$

Solving for the critical point we obtain the Newton parameter update:

$$
w^{*}=w_{0}-\mathbf{H}_{w} L\left(w_{0}\right)^{-1} \nabla_{w} L\left(w_{0}\right)
$$

Hessian has $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$ elements
Inverting takes $\mathrm{O}\left(\mathrm{N}^{\wedge} 3\right)$
$\mathrm{N}=$ (Tens or Hundreds of) Millions

In practice:

- Adam is a good default choice in many cases SGD+Momentum can outperform Adam but may require more tuning
- If you can afford to do full batch updates then try out L-BFGS (and don't forget to disable all sources of noise)

Summary

1. Use Linear Models for image classification problems
2. Use Loss Functions to express preferences over different selection of weights

$$
\begin{aligned}
L_{i} & =-\log \left(\frac{e^{s_{y}}}{\sum_{j} e^{s_{j}}}\right) \text { Softmax } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W)
\end{aligned}
$$

3. Use Stochastic Gradient Descent to minimize our loss functions and train the model
```
v = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    v = rho * v + dw
    w -= learning_rate * v
```


