### **Deep Learning**

#### First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test\_images):
 # Use model to predict labels
 return test\_labels

Predict the label
 of the most similar training image

Parametric Approach: Linear Classifier



### **Loss Function**



#### L: Metric to assess what loss of data classification our model incurs

### Hinge loss



scores = unnormalized log probabilities of the classes.

$$s = f(x_i; W)$$

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where  $s=f(x_i)$ 

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

 $s = f(x_i; W)$ 

#### Softmax function

where

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

Q

where

$$s = f(x_i; W)$$

#### scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where  $oldsymbol{s}=f(x_i;W)$ 

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

#### scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where  $oldsymbol{s}=f(x_i;W)$ 

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

in summary: 
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

**Cross-Entropy Loss** 
$$L_i = -\log(\frac{e^{sy_i}}{\sum_j e^{s_j}})$$



Cross-Entropy Loss  $L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$ 

Multiplying many probabilities/likelihood may lead to very small numbers: e.g.  $0.9*0.1*0.01 = 0.0009 \rightarrow$  this is undesirable

To avoid this we can express products as sums by using the log function:

 $\log(a \cdot b) = \log(a) + \log(b)$ 



$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$



unnormalized log probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$



unnormalized log probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$



$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$



$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$



### Softmax vs. SVM



#### Softmax vs. SVM



# Summary

- We have some dataset of (x,y)
- We have a **score function**:
- We have a loss function:

$$s=f(x;W) \stackrel{ ext{e.g.}}{=} Wx$$





# Summary

- We have some dataset of (x,y)
- We have a **score function**:
- We have a **loss function**:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1)$  $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$  Complete loss

$$s=f(x;W)\stackrel{ ext{e.g.}}{=}Wx$$



#### Optimization

# $w^* = \arg\min_w L(w)$



### Idea: Follow the slope

In 1-dimension, the **derivative** of a function gives the slope:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

### Idea: Follow the slope

In 1-dimension, the **derivative** of a function gives the slope:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of partial derivatives along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient** 

# Gradient $\nabla f$ in 2D

 The gradient of a scalar-valued differentiable function f of several variables, is a vector-valued function ∇ f : R<sup>n</sup> → R<sup>n</sup> whose value at a point is a tangent vector to f.

$$abla f = rac{\partial f}{\partial x} \mathbf{i} + rac{\partial f}{\partial y} \mathbf{j}$$

where **i**, **j** are the standard unit vectors in the directions of the *x*, *y* coordinates

### Example

x = y = np.linspace(-10., 10., 41)
xv, yv = np.meshgrid(x, y, indexing='ij')
fv = h0/(1 + (xv\*\*2+yv\*\*2)/(R\*\*2)) # Some function

### Example

plt.pcolormesh(x,y,fv, cmap = 'jet')



### Example

ax.plot\_surface(xv, yv, fv, cmap='jet')



### Gradient Computation $\nabla f$

dhdx, dhdy = np.gradient(fv) # dh/dx, dh/d



| current W:                                                    |  |
|---------------------------------------------------------------|--|
| [0.34,<br>-1.11,<br>0.78,<br>0.12,<br>0.55,<br>2.81,<br>-3.1, |  |
| -1.5,<br>0.33,]<br><b>loss 1.25347</b>                        |  |

#### gradient dL/dW:



| current W:               | <b>W + h</b> (first dim):         |
|--------------------------|-----------------------------------|
| [0.34 <i>,</i><br>-1.11, | [0.34 + <b>0.0001</b> ,<br>-1.11, |
| 0.78,                    | 0.78,                             |
| 0.12,                    | 0.12,                             |
| 0.55,                    | 0.55,                             |
| 2.81,                    | 2.81,                             |
| -3.1,                    | -3.1,                             |
| -1.5,                    | -1.5,                             |
| 0.33,]                   | 0.33,]                            |
| loss 1.25347             | loss 1.25322                      |

#### gradient dL/dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,...]

| current W:               |
|--------------------------|
| [0.34 <i>,</i><br>-1.11, |
| 0.78,                    |
| 0.12,                    |
| 0.55,                    |
| 2.81,                    |
| -3.1,                    |
| -1.5,                    |
| 0.33,]                   |
| loss 1.25347             |

W + h (first dim): [0.34 + **0.0001**, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25322

### gradient dL/dW: [-2.5, ?, ?, (1.25322 - 1.25347)/0.0001 = -2.5 $rac{df(x)}{df(x)} = \lim rac{f(x+h) - f(x)}{df(x)}$ dx $h \rightarrow 0$ ?, ?,...]

| current W:   |  |
|--------------|--|
| [0.34,       |  |
| -1.11,       |  |
| 0.78,        |  |
| 0.12,        |  |
| 0.55,        |  |
| 2.81,        |  |
| -3.1,        |  |
| -1.5,        |  |
| 0.33,]       |  |
| loss 1.25347 |  |

W + h (second dim): [0.34, -1.11 + **0.0001**, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25353

#### gradient dL/dW:

| current W:                     |
|--------------------------------|
| [0.34,                         |
| -1.11,<br>0.78,                |
| 0.12 <i>,</i><br>0.55 <i>,</i> |
| 2.81,<br>-3.1,                 |
| -1.5 <i>,</i><br>0.33,]        |
| loss 1.25347                   |

W + h (second dim): [0.34, -1.11 + 0.0001, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25353

#### gradient dL/dW:



(**1.25353** - **1.25347**)/0.0001 = 0.6

$$\displaystyle rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

ː,...]

| [0.34,<br>-1.11,<br>0.78,<br>0.12,<br>0.55, |
|---------------------------------------------|
| 2.81,<br>-3.1,<br>-1.5,<br>0.33,]           |

## W + h (third dim):

[0.34, -1.11, 0.78 + 0.0001, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

#### gradient dL/dW:

[-2.5, 0.6, ?, ?, ?, ?, ?, ?, ?,...]

| current W:                                                                                              | <b>W + h</b> (third dim):                                                                                                | gradient dL/dW:                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [0.34,<br>-1.11,<br>0.78,<br>0.12,<br>0.55,<br>2.81,<br>-3.1,<br>-1.5,<br>0.33,]<br><b>loss 1.25347</b> | [0.34,<br>-1.11,<br>0.78 + <b>0.0001</b> ,<br>0.12,<br>0.55,<br>2.81,<br>-3.1,<br>-1.5,<br>0.33,]<br><b>loss 1.25347</b> | $[-2.5, \\ 0.6, \\ 0.0, \\ ?, \uparrow \\ ?, \uparrow \\ ?, \uparrow \\ (1.25347 - 1.25347)/0.0001 \\ = 0.0 \\ \boxed{\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}}$ |

| current W:   |
|--------------|
| [0.34,       |
| -1.11,       |
| 0.78,        |
| 0.12,        |
| 0.55,        |
| 2.81,        |
| -3.1,        |
| -1.5,        |
| 0.33,]       |
| loss 1.25347 |

**W** + h (third dim): [0.34, -1.11, 0.78 + 0.0001, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

## [-2.5, 0.6, 0.0, ?, ?, **Numeric Gradient:** - Slow: O(#dimensions) - Approximate

gradient dL/dW:

#### Loss is a function of W: Analytic Gradient

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

want  $\nabla_W L$ 

Use calculus to compute an analytic gradient

current W:

gradient dL/dW:



current W:

#### gradient dL/dW:



Numeric gradient: approximate, slow, easy to write
 Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a **gradient check.** 

Numeric gradient: approximate, slow, easy to write
 Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

```
def grad_check_sparse(f, x, analytic_grad, num_checks=10, h=1e-7):
    """
    sample a few random elements and only return numerical
    in this dimensions.
    """
```

-

-

Numeric gradient: approximate, slow, easy to write Analytic gradient: exact, fast, error-prone

torch.autograd.gradcheck(func, inputs, eps=1e-06, atol=1e-05, rtol=0.001, raise\_exception=True, check\_sparse\_nnz=False, nondet\_tol=0.0)

[SOURCE] S

Check gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs that are of floating point type and with requires\_grad=True.

The check between numerical and analytical gradients uses allclose().

-

-

Numeric gradient: approximate, slow, easy to write Analytic gradient: exact, fast, error-prone

torch.autograd.gradgradcheck(func, inputs, grad\_outputs=None, eps=1e-06, atol=1e-05, rtol=0.001, gen\_non\_contig\_grad\_outputs=False, raise\_exception=True, nondet\_tol=0.0)

Check gradients of gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs and grad\_outputs that are of floating point type and with requires\_grad=True.

[SOURCE]

This function checks that backpropagating through the gradients computed to the given grad\_outputs are correct.

## **Gradient Descent**

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
   dw = compute_gradient(loss_fn, data, w)
   w -= learning_rate * dw
```

- Weight initialization method
- Number of steps
- Learning rate

## **Gradient Descent**

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
   dw = compute_gradient(loss_fn, data, w)
   w -= learning_rate * dw
```

- Weight initialization method
- Number of steps
- Learning rate



## **Gradient Descent**

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
   dw = compute_gradient(loss_fn, data, w)
   w -= learning_rate * dw
```

- Weight initialization method
- Number of steps
- Learning rate



#### Batch Gradient Descent

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
  
$$7_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

### Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
  
$$7_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

- # Stochastic gradient descent
- w = initialize\_weights()
- for t in range(num\_steps):

minibatch = sample\_data(data, batch\_size)

- dw = compute\_gradient(loss\_fn, minibatch, w)
- w -= learning\_rate \* dw

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

#### Stochastic Gradient Descent (SGD)

$$L(W) = \mathbb{E}_{(x,y) \sim p_{data}} \left[ L(x, y, W) \right] + \lambda R(W)$$

Think of loss as an expectation over the full **data distribution** p<sub>data</sub>

$$\approx \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W)$$

#### Stochastic Gradient Descent (SGD)

$$L(W) = \mathbb{E}_{(x,y) \sim p_{data}} \left[ L(x, y, W) \right] + \lambda R(W)$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W)$$

Think of loss as an expectation over the full **data distribution** p<sub>data</sub>

Approximate expectation via sampling

$$\nabla_W L(W) = \nabla_W \mathbb{E}_{(x,y) \sim p_{data}} \left[ L(x, y, W) \right] + \lambda \nabla_W R(W))$$
$$\approx \sum_{i=1}^N \nabla_W L_W(x_i, y_i, W) + \nabla_W R(W)$$

What if loss changes quickly in one direction and slowly in another?



Loss function contour with minimum in the center

What if loss changes quickly in one direction and slowly in another? Very slow progress along shallow dimension, jitter along steep direction



Loss function contour with minimum in the center

# What if the loss function has a **local minimum** or **saddle point**?



# What if the loss function has a **local minimum** or **saddle point**?

Zero gradient, gradient descent gets stuck



Gradients are calculated from minibatches  $\rightarrow$  they can be **noisy** 

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W)$$



SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

for t in range(num\_steps):
 dw = compute\_gradient(w)
 w -= learning\_rate \* dw

#### SGD + Momentum

SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

for t in range(num\_steps):
 dw = compute\_gradient(w)
 w -= learning\_rate \* dw

SGD+Momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$

$$x_{t+1} = x_t - \alpha v_{t+1}$$

v = 0
for t in range(num\_steps):
 dw = compute\_gradient(w)
 v = rho \* v + dw
 w -= learning\_rate \* v

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

#### SGD + Momentum



#### **Gradient Noise**



#### AdaGrad



Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

"Per-parameter learning rates" or "adaptive learning rates"

#### AdaGrad





Progress along "steep" directions is damped; progress along "flat" directions is accelerated

### RMSProp









#### **RMSProp Noise**





```
moment1 = 0
moment2 = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
```

moment1 = 0
moment2 = 0
for t in range(num\_steps):
 dw = compute\_gradient(w)
 moment1 = beta1 \* moment1 + (1 - beta1) \* dw
 moment2 = beta2 \* moment2 + (1 - beta2) \* dw \* dw
 w -= learning\_rate \* moment1 / (moment2.sqrt() + 1e-7)

Momentum

SGD+Momentum

| moment1 = 0                                             |                    |
|---------------------------------------------------------|--------------------|
| moment2 = 0                                             | Adam               |
| <pre>for t in range(num_steps):</pre>                   |                    |
| <pre>dw = compute_gradient(w)</pre>                     | Momentum           |
| moment1 = beta1 * moment1 + (1 - beta1) * dw            | AdaCrad / DNASDran |
| moment2 = beta2 $*$ moment2 + (1 - beta2) $*$ dw $*$ dw | AdaGrad / RMSProp  |
| w —= learning_rate * moment1 / (moment2.sqrt() + 1e-7)  |                    |
|                                                         |                    |





**Bias correction** for the fact that first and second moment estimates start at zero

```
moment1 = 0
moment2 = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    moment1_unbias = moment1 / (1 - beta1 ** t)
    moment2_unbias = moment2 / (1 - beta2 ** t)
    w -= learning_rate * moment1_unbias / (moment2_unbias.sqrt() + 1e-7)
```

**Bias correction** for the fact that first and second moment estimates start at zero

Adam example values: beta1 = 0.9, beta2 = 0.999, and learning\_rate = 1e-3, 5e-4, 1e-4

#### Adam





### **Optimization Algorithm Comparison**

| Algorithm    | Tracks first<br>moments<br>(Momentum) | Tracks second<br>moments<br>(Adaptive<br>learning rates) | Leaky second<br>moments | Bias correction<br>for moment<br>estimates |
|--------------|---------------------------------------|----------------------------------------------------------|-------------------------|--------------------------------------------|
| SGD          | X                                     | X                                                        | X                       | X                                          |
| SGD+Momentum | $\checkmark$                          | X                                                        | X                       | X                                          |
| AdaGrad      | X                                     | $\checkmark$                                             | X                       | X                                          |
| RMSProp      | X                                     | $\checkmark$                                             | $\checkmark$            | X                                          |
| Adam         | $\checkmark$                          | $\checkmark$                                             | $\checkmark$            | $\checkmark$                               |

#### So far: First-Order Optimization



#### So far: First-Order Optimization







Second-Order Taylor Expansion:

$$L(w) \approx L(w_0) + (w - w_0)^{\mathsf{T}} \nabla_w L(w_0) + \frac{1}{2} (w - w_0)^{\mathsf{T}} \mathbf{H}_w L(w_0) (w - w$$

Solving for the critical point we obtain the Newton parameter update:

$$w^* = w_0 - \mathbf{H}_w L(w_0)^{-1} \nabla_w L(w_0)$$

Second-Order Taylor Expansion:

$$L(w) \approx L(w_0) + (w - w_0)^{\mathsf{T}} \nabla_w L(w_0) + \frac{1}{2} (w - w_0)^{\mathsf{T}} \mathbf{H}_w L(w_0) (w - w$$

Solving for the critical point we obtain the Newton parameter update:

$$w^* = w_0 - \mathbf{H}_w L(w_0)^{-1} \nabla_w L(w_0)$$

Hessian has O(N^2) elements Inverting takes O(N^3) N = (Tens or Hundreds of) Millions

#### In practice:

-

\_

- Adam is a good default choice in many cases SGD+Momentum can outperform Adam but may require more tuning
- If you can afford to do full batch updates then try out L-BFGS (and don't forget to disable all sources of noise)

#### Summary

- 1. Use Linear Models for image classification problems
- 2. Use Loss Functions to express preferences over different selection of weights
- Use Stochastic Gradient
   Descent to minimize our loss functions and train the model

$$s = f(x; W) = Wx$$

$$egin{aligned} L_i &= -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \,\,\, ext{Softmax} \ L_i &= \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1) \ L &= rac{1}{N} \sum_{i=1}^N L_i + R(W) \end{aligned}$$

v = 0
for t in range(num\_steps):
 dw = compute\_gradient(w)
 v = rho \* v + dw
 w -= learning\_rate \* v

