
Deep Learning

First classifier: Nearest Neighbor

Memorize all

data and labels

Predict the label

of the most similar

training image

Lecture 2 -

Parametric Approach: Linear Classifier

Image

W
parameters

or weights

f(x,W)
10 numbers defining

class scores

Lecture 2 -

Array of 32x32x3 numbers

(3072 numbers total)

f(x,W) = Wx

Loss Function

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

L: Metric to assess what loss of data classification our model incurs

Hinge loss

Softmax Classifier (Multinomial Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

scores = unnormalized log probabilities of the classes.

where

Softmax Classifier (Multinomial Logistic Regression)

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

where

Softmax function

Softmax Classifier (Multinomial Logistic Regression)

scores = unnormalized log probabilities of the classes.

where

Softmax function

sc
o

re
s

p
ro

b
ab

ili
ti

es
o

r
co

n
fi

d
en

ce

3.2

5.1

-1.7

0.2

0.8

 0.0

Want to maximize the log likelihood, or (for a loss function)

to minimize the negative log likelihood of the correct class:

scores = unnormalized log probabilities of the classes.

where

Softmax Classifier (Multinomial Logistic Regression)

Want to maximize the log likelihood, or (for a loss function)

to minimize the negative log likelihood of the correct class:

in summary:

scores = unnormalized log probabilities of the classes.

where

Softmax Classifier (Multinomial Logistic Regression)

Cross-Entropy Loss

Cross-Entropy Loss

Multiplying many probabilities/likelihood may

lead to very small numbers:

e.g. 0.9*0.1*0.01 = 0.0009 → this is

undesirable

To avoid this we can express products as

sums by using the log function:

log 𝑎 ∙ 𝑏 = log 𝑎 + log(𝑏)

cat

car

frog

3.2

5.1

-1.7
unnormalized log probabilities

Softmax Classifier (Multinomial Logistic Regression)

cat

car

frog

3.2

5.1

-1.7
unnormalized log probabilities

24.5

164.0

0.18

exp

unnormalized probabilities

Softmax Classifier (Multinomial Logistic Regression)

cat

car

frog

3.2

5.1

-1.7
unnormalized log probabilities

24.5

164.0

0.18

exp

unnormalized probabilities

normalize
0.13

0.87

0.00
probabilities

Softmax Classifier (Multinomial Logistic Regression)

cat

car

frog

3.2

5.1

-1.7
unnormalized log probabilities

24.5

164.0

0.18

exp

unnormalized probabilities

normalize
0.13

0.87

0.00
probabilities

𝐿𝑖 = -log(0.13)

= 2.04

Softmax Classifier (Multinomial Logistic Regression)

cat

car

frog

3.2

5.1

-1.7
unnormalized log probabilities

24.5

164.0

0.18

exp

unnormalized probabilities

normalize
0.13

0.87

0.00
probabilities

𝐿𝑖 = -log(0.13)

= 2.04

Softmax Classifier (Multinomial Logistic Regression)

Softmax vs. SVM

Softmax vs. SVM

Summary

- We have some dataset of (x,y)

- We have a score function:

- We have a loss function:

e.g.

Softmax

SVM

Complete loss

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

regularization loss

Summary

- We have some dataset of (x,y)

- We have a score function:

- We have a loss function:

e.g.

Softmax

SVM

Complete loss

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

regularization loss

optimization

Optimization

Idea: Follow the slope

In 1-dimension, the derivative of a function gives the slope:

In 1-dimension, the derivative of a function gives the slope:

In multiple dimensions, the gradient is the vector of partial derivatives along each
dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Idea: Follow the slope

Gradient 𝛻𝑓 in 2D

• The gradient of a scalar-valued differentiable function f of
several variables, is a vector-valued function ∇ f : Rn → Rn
whose value at a point is a tangent vector to f.

where i, j are the standard unit vectors in the directions of the x, y coordinates

Example

x = y = np.linspace(-10., 10., 41)

xv, yv = np.meshgrid(x, y, indexing=’ij’)

fv = h0/(1 + (xv**2+yv**2)/(R**2)) # Some function

Example

plt.pcolormesh(x,y,fv, cmap = 'jet')

Example

ax.plot_surface(xv, yv, fv, cmap='jet')

Gradient Computation 𝛻𝑓

dhdx, dhdy = np.gradient(fv) # dh/dx, dh/d

gradient gradient + contour gradient + function

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dL/dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dL/dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dL/dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

?,
?,
?,
?,

(1.25322 - 1.25347)/0.0001
= -2.5

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient dL/dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

gradient dL/dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,?,
?,…]

?,
?,
?,
?,

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

gradient dL/dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dL/dW:

[-2.5,
0.6,
0.0,
?,
?,

?,
?,
?,
?,]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0.0

gradient dL/dW:

[-2.5,
0.6,
0.0,
?,
?,

?,
?,
?,
?,]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Numeric Gradient:
- Slow: O(#dimensions)
- Approximate

Loss is a function of W: Analytic Gradient

Use calculus to compute an
analytic gradient

want

gradient dL/dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

dL/dW = ...
(some function
data and W)

gradient dL/dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

dL/dW = ...
(some function
data and W)

(In practice we will compute
dL/dW using backpropagation)

Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Computing Gradients

Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

negative
gradient
direction

W_1

W_2
original W

Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Batch Gradient Descent
Full sum expensive
when N is large!

Stochastic Gradient Descent (SGD)
Full sum expensive
when N is large!

Approximate sum using
a minibatch of examples
32 / 64 / 128 common

Hyperparameters:
- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

Think of loss as an
expectation over the full
data distribution pdata

Approximate
expectation via sampling

Stochastic Gradient Descent (SGD)

Think of loss as an
expectation over the full
data distribution pdata

Approximate
expectation via sampling

Stochastic Gradient Descent (SGD)

Problems with SGD

What if loss changes quickly in one direction and slowly in another?

Loss function contour with minimum in the center

What if loss changes quickly in one direction and slowly in another?
Very slow progress along shallow dimension, jitter along steep
direction

Problems with SGD

Loss function contour with minimum in the center

What if the loss function
has a local minimum or
saddle point?

Local
Minimum

Saddle
point

Problems with SGD

What if the loss function
has a local minimum or
saddle point?

Zero gradient, gradient
descent gets stuck

Local
Minimum

Saddle
point

Problems with SGD

Gradients are calculated from
minibatches→ they can be noisy

Problems with SGD

SGD

SGD + Momentum

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

SGD+Momentum

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

SGD + Momentum

AdaGrad

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

AdaGrad

Progress along “steep” directions is damped; progress along “flat” directions is
accelerated

RMSProp

AdaGrad

Tieleman and Hinton, 2012

RMSProp

SGD

RMSProp

RMSProp

SGD

RMSProp

SGD+Momentum

RMSProp Noise

Adam: RMSProp + Momentum

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Momentum

SGD+Momentum

Adam: RMSProp + Momentum

RMSProp

Adam

Momentum

AdaGrad / RMSProp

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam: RMSProp + Momentum

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact
that first and second moment
estimates start at zero

Adam: RMSProp + Momentum

Bias correction for the fact
that first and second moment
estimates start at zero

Adam example values: beta1 = 0.9, beta2 = 0.999,
and learning_rate = 1e-3, 5e-4, 1e-4

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam: RMSProp + Momentum

Adam

SGD

SGD+Momentum

RMSProp

Adam

Optimization Algorithm Comparison

Algorithm

Tracks first
moments

(Momentum)

Tracks second
moments
(Adaptive

learning rates)

Leaky second
moments

Bias correction
for moment

estimates

SGD 𝙭 𝙭 𝙭 𝙭

SGD+Momentum ✓ 𝙭 𝙭 𝙭

AdaGrad 𝙭 ✓ 𝙭 𝙭

RMSProp 𝙭 ✓ ✓ 𝙭

Adam ✓ ✓ ✓ ✓

So far: First-Order Optimization

Loss

w1

Loss

w1

1. Use gradient to make linear approximation
2. Step to minimize the approximation

So far: First-Order Optimization

Second-Order Optimization

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Second-Order Optimization

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas
of low curvature

Second-Order Optimization

Second-Order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Second-Order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N^2) elements
Inverting takes O(N^3)
N = (Tens or Hundreds of) Millions

In practice:

- Adam is a good default choice in many cases
SGD+Momentum can outperform Adam but may
require more tuning

- If you can afford to do full batch updates then try out
L-BFGS (and don’t forget to disable all sources of noise)

Summary

1. Use Linear Models for image
classification problems

2. Use Loss Functions to express
preferences over different
selection of weights

3. Use Stochastic Gradient
Descent to minimize our loss
functions and train the model

Softmax
SVM

	Slide 1: Deep Learning
	Slide 2: First classifier: Nearest Neighbor
	Slide 3: f(x,W) = Wx
	Slide 4: Loss Function
	Slide 5: Hinge loss
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Softmax vs. SVM
	Slide 21: Softmax vs. SVM
	Slide 22
	Slide 23
	Slide 24: Optimization
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Gradient dell f in 2D
	Slide 29: Example
	Slide 30: Example
	Slide 31: Example
	Slide 32: Gradient Computation dell f
	Slide 33: current W:
	Slide 34: current W:
	Slide 35: current W:
	Slide 36: current W:
	Slide 37: current W:
	Slide 38: current W:
	Slide 39: current W:
	Slide 40: current W:
	Slide 41: Loss is a function of W: Analytic Gradient
	Slide 42: current W:
	Slide 43: current W:
	Slide 44: Computing Gradients
	Slide 45: Computing Gradients
	Slide 46: Computing Gradients
	Slide 47: Computing Gradients
	Slide 48: Gradient Descent
	Slide 49: negative gradient direction
	Slide 50: Gradient Descent
	Slide 51
	Slide 52: Stochastic Gradient Descent (SGD)
	Slide 53
	Slide 54
	Slide 55: Problems with SGD
	Slide 56
	Slide 57: Problems with SGD
	Slide 58: Problems with SGD
	Slide 59
	Slide 60
	Slide 61: SGD + Momentum
	Slide 62: Gradient Noise
	Slide 63: AdaGrad
	Slide 64: AdaGrad
	Slide 65: RMSProp
	Slide 66
	Slide 67
	Slide 68: Adam: RMSProp + Momentum
	Slide 69: Adam: RMSProp + Momentum
	Slide 70: Adam: RMSProp + Momentum
	Slide 71
	Slide 72: Adam: RMSProp + Momentum
	Slide 73: Adam
	Slide 74: Optimization Algorithm Comparison
	Slide 75: So far: First-Order Optimization
	Slide 76
	Slide 77: Second-Order Optimization
	Slide 78: Second-Order Optimization
	Slide 79: Second-Order Optimization
	Slide 80: Second-Order Optimization
	Slide 81: In practice:
	Slide 82: Summary

