
Deep Learning



First classifier: Nearest Neighbor

Memorize all 

data and labels

Predict the label 

of the most similar 

training image
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Parametric Approach: Linear Classifier

Image

W
parameters

or weights

f(x,W)
10 numbers defining 

class scores

Lecture 2 -

Array of 32x32x3 numbers 

(3072 numbers total)

f(x,W) = Wx



Loss Function

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

L: Metric to assess what loss of data classification our model incurs



Hinge loss



Softmax Classifier (Multinomial Logistic Regression)
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Want to maximize the log likelihood, or (for a loss function)  

to minimize the negative log likelihood of the correct class:

scores = unnormalized log probabilities of the classes.

where

Softmax Classifier (Multinomial Logistic Regression)



Want to maximize the log likelihood, or (for a loss function)  

to minimize the negative log likelihood of the correct class:

in summary:

scores = unnormalized log probabilities of the classes.

where

Softmax Classifier (Multinomial Logistic Regression)



Cross-Entropy Loss



Cross-Entropy Loss

Multiplying many probabilities/likelihood may 

lead to very small numbers:

e.g. 0.9*0.1*0.01 = 0.0009 → this is 

undesirable

To avoid this we can express products as 

sums by using the log function:

log 𝑎 ∙ 𝑏 = log 𝑎 + log(𝑏)
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Softmax vs. SVM



Softmax vs. SVM



Summary

- We have some dataset of (x,y)

- We have a score function:

- We have a loss function:

e.g.

Softmax

SVM

Complete loss

𝑓(𝑥𝑖 ,𝑊)
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 𝑦𝑖

𝑊

𝐿
data loss

regularization loss



Summary

- We have some dataset of (x,y)

- We have a score function:

- We have a loss function:

e.g.

Softmax

SVM

Complete loss

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

regularization loss

optimization



Optimization





Idea: Follow the slope

In 1-dimension, the derivative of a function gives the slope:



In 1-dimension, the derivative of a function gives the slope:

In multiple dimensions, the gradient is the vector of partial derivatives along each 
dimension

The slope in any direction is the dot product of the direction with the gradient 
The direction of steepest descent is the negative gradient

Idea: Follow the slope



Gradient 𝛻𝑓 in 2D

• The gradient of a scalar-valued differentiable function f of 
several variables, is a vector-valued function ∇ f : Rn → Rn 
whose value at a point is a tangent vector to f.

where i, j are the standard unit vectors in the directions of the x, y coordinates



Example

x = y = np.linspace(-10., 10., 41)

xv, yv = np.meshgrid(x, y, indexing=’ij’)

fv = h0/(1 + (xv**2+yv**2)/(R**2)) # Some function



Example

plt.pcolormesh(x,y,fv, cmap = 'jet')



Example

ax.plot_surface(xv, yv, fv, cmap='jet')



Gradient Computation 𝛻𝑓

dhdx, dhdy = np.gradient(fv) # dh/dx, dh/d

gradient gradient + contour gradient + function
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gradient dL/dW:
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= 0.0



gradient dL/dW:

[-2.5,
0.6,
0.0,
?,
?,

?,
?,
?,
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Numeric Gradient:
- Slow: O(#dimensions)
- Approximate



Loss is a function of W: Analytic Gradient

Use calculus to compute an
analytic gradient

want



gradient dL/dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

dL/dW = ... 
(some function 
data and W)



gradient dL/dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

dL/dW = ... 
(some function 
data and W)

(In practice we will compute 
dL/dW using backpropagation)



Computing Gradients

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.
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- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.

Computing Gradients



Gradient Descent

Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate
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Gradient Descent

Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate



Batch Gradient Descent
Full sum expensive 
when N is large!



Stochastic Gradient Descent (SGD)
Full sum expensive 
when N is large!

Approximate sum using 
a minibatch of examples 
32 / 64 / 128 common

Hyperparameters:
- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling



Think of loss as an 
expectation over the full 
data distribution pdata

Approximate 
expectation via sampling

Stochastic Gradient Descent (SGD)



Think of loss as an 
expectation over the full 
data distribution pdata

Approximate 
expectation via sampling

Stochastic Gradient Descent (SGD)



Problems with SGD

What if loss changes quickly in one direction and slowly in another? 

Loss function contour with minimum in the center



What if loss changes quickly in one direction and slowly in another? 
Very slow progress along shallow dimension, jitter along steep
direction

Problems with SGD

Loss function contour with minimum in the center



What if the loss function 
has a local minimum or 
saddle point?

Local 
Minimum

Saddle  
point

Problems with SGD



What if the loss function 
has a local minimum or 
saddle point?

Zero gradient, gradient 
descent gets stuck

Local 
Minimum

Saddle  
point

Problems with SGD



Gradients are calculated from 
minibatches→ they can be noisy

Problems with SGD



SGD



SGD + Momentum

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

SGD+Momentum

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013



Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

SGD + Momentum



AdaGrad

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”



AdaGrad

Progress along “steep” directions is damped; progress along “flat” directions is
accelerated



RMSProp

AdaGrad

Tieleman and Hinton, 2012

RMSProp



SGD

RMSProp

RMSProp



SGD

RMSProp

SGD+Momentum

RMSProp Noise



Adam: RMSProp + Momentum

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015



Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Momentum

SGD+Momentum

Adam: RMSProp + Momentum



RMSProp

Adam

Momentum 

AdaGrad / RMSProp

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam: RMSProp + Momentum



Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum 

AdaGrad / RMSProp

Bias correction

Bias correction for the fact 
that first and second moment 
estimates start at zero

Adam: RMSProp + Momentum



Bias correction for the fact 
that first and second moment 
estimates start at zero

Adam example values: beta1 = 0.9, beta2 = 0.999, 
and learning_rate = 1e-3, 5e-4, 1e-4

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam: RMSProp + Momentum



Adam

SGD

SGD+Momentum  

RMSProp

Adam



Optimization Algorithm Comparison

Algorithm

Tracks first 
moments 

(Momentum)

Tracks second 
moments 
(Adaptive 

learning rates)

Leaky second 
moments

Bias correction 
for moment 

estimates

SGD 𝙭 𝙭 𝙭 𝙭

SGD+Momentum ✓ 𝙭 𝙭 𝙭

AdaGrad 𝙭 ✓ 𝙭 𝙭

RMSProp 𝙭 ✓ ✓ 𝙭

Adam ✓ ✓ ✓ ✓



So far: First-Order Optimization

Loss

w1



Loss

w1

1. Use gradient to make linear approximation
2. Step to minimize the approximation

So far: First-Order Optimization



Second-Order Optimization

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation



Second-Order Optimization

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas 
of low curvature



Second-Order Optimization

Second-Order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:



Second-Order Optimization

Second-Order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N^2) elements 
Inverting takes O(N^3)
N = (Tens or Hundreds of) Millions



In practice:

- Adam is a good default choice in many cases 
SGD+Momentum can outperform Adam but may 
require more tuning

- If you can afford to do full batch updates then try out
L-BFGS (and don’t forget to disable all sources of noise)



Summary

1. Use Linear Models for image 
classification problems

2. Use Loss Functions to express 
preferences over different 
selection of weights

3. Use Stochastic Gradient 
Descent to minimize our loss 
functions and train the model

Softmax
SVM
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