
Deep Learning

First classifier: Nearest Neighbor

Memorize all

data and labels

Predict the label

of the most similar

training image

Lecture 2 -

Example

1-nearest neighbor

Lecture 2 -

x1

x2

Points are
training
examples;
colors give
training
labels

Background colors

give the category
a test point would
be assigned

Decision boundary
is the boundary
between two
classification regions

Decision
boundaries can be
noisy; affected by
outliers

Linear classifiers : Motivation

• kNN produce decision boundaries by calculating them during prediction.

• Can we define a (simple) function during training to define decision
boundaries directly?

x2

x1

Parametric Approach: Linear Classifier

Image

W
parameters

or weights

f(x,W)
10 numbers defining

class scores

Lecture 2 -

Array of 32x32x3 numbers

(3072 numbers total)

f(x,W) = Wx

Parametric Approach: Linear Classifier

f(x,W) = Wx+b

Shape: (10,1)
Shape: (3072,1)

Shape: (10,3072)w1·x=w1,1*x1+…+w1,3072*x3072

Loss Function

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

L: Metric to assess what loss of data classification our model incurs

Hinge loss

Cross-Entropy Loss

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

regularization loss

optimization

Linear Classifier

Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Gradients are calculated from
minibatches→ they can be noisy

Problems with SGD

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

SGD + Momentum

Adam

SGD

SGD+Momentum

RMSProp

Adam

Summary

1. Use Linear Models for image
classification problems

2. Use Loss Functions to express
preferences over different
selection of weights

3. Use Stochastic Gradient
Descent to minimize our loss
functions and train the model

Softmax
SVM

Cifar10 Linear Classifier

𝑠 = 𝑓(𝑥,𝑊)

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)Value of pixel (15, 8, 0)

Airplane
Score

Car Score

Deer ScoreClassifier
score

Geometric Interpretation: Linear Classifier

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Pixel
(15, 8, 0)

Car Score
= 0

Pixel
(11, 11, 0)

Car score
increases
this way

Geometric Interpretation: Linear Classifier

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Pixel
(15, 8, 0)

Car Score
= 0

Car score
increases
this way

Car template
on this line

Geometric Interpretation: Linear Classifier

Pixel
(11, 11, 0)

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Pixels

Car Score
= 0

Car score
increases
this way

Car template
on this line

Geometric Interpretation: Linear Classifier

Pixels

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Car Score
= 0

Car score
increases
this way

Car template
on this line

Deer
Score

Airplane
Score

Geometric Interpretation: Linear Classifier

Pixels

Pixels

Linear classifier has
one “template” per
category

W

Visual Interpretation: Linear Classifier

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W

Input image

56

231

24

2

56 231

24 2

1.1

3.2

-1.2

+ =

-96.8

437.9

61.95

Cat score

Dog score

Ship score

b

Flatten tensors into a vector

x

A single template
cannot capture
multiple modes of
the data

e.g. horse template has 2 heads

Visual Interpretation: Linear Classifier

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W

Input image

56

231

24

2

56 231

24 2

1.1

3.2

-1.2

+ =

-96.8

437.9

61.95

Cat score

Dog score

Ship score

b

Flatten tensors into a vector

x

Linear Classifiers

f(x,W) = Wx

Algebraic Interpretation Visual Interpretation Geometric Interpretation

One template
per class

Hyperplanes
separating space

Linear Classifiers shortcomings

Geometric Viewpoint Visual Viewpoint

x

y

Some training data
can’t be separated with
a hyperplane

One template per class:
Can’t recognize different
modes of a class

Apply Transformations

Transformation

x

y

Extract features using transformations

Apply Transformations

f(x, y) = (r(x, y), θ(x, y))

x

y

r

θ

Extract features using transformations

Apply Transformations

f(x, y) = (r(x, y), θ(x, y))

x

y

r

θ

Extract features using transformations
Linear classifier
in feature space

Apply Transformations

f(x, y) = (r(x, y), θ(x, y))

x

y

r

θ

Linear classifier
in feature space

Nonlinear classifier in
original space!

Example: Color Histogram

Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions
Within each region quantize edge
direction into 9 bins

Example: 320x240 image gets divided
into 40x30 bins; in each bin there are 9
numbers so feature vector has 30*40*9
= 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Feature Aggregation

𝑓1(𝑥)

𝑥

𝑓2(𝑥)

𝑓3(𝑥)

𝑓1(𝑥) ⊕ 𝑓2(𝑥) ⊕ 𝑓3(𝑥)

Image Features

training

Feature Extraction

f
10 numbers giving

scores for classes

+
Class Label

Image Features

training

10 numbers giving
scores for classes

Feature Extraction

f
10 numbers giving

scores for classes

+
Class Label training

Neural Networks

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural Networks

(Before) Linear score function:

(Now) 2-layer Neural Network

(Before) Linear score function:

(Now) 2-layer Neural Network

or 3-layer Neural Network

Neural Networks

Neural Networks

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Element (i, j)
of W1 gives
the effect on
hi from xj

Element (i, j)
of W2 gives
the effect on
si from hj

x h s
Input:
3072

Hidden layer:
100

Output: 10

W1 W2

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural Networks

(Before) Linear score function:

(Now) 2-layer Neural Network

Element (i, j) of W1

gives the effect on
hi from xj

All elements
of x affect all
elements of h

Element (i, j) of W2

gives the effect on
si from hj

All elements
of h affect all
elements of s

x hW1 sW2
Input:
3072

Hidden layer:
Output: 10

100

Fully-connected neural network
Also “Multi-Layer Perceptron” (MLP)

Neural Networks

Linear classifier: One template per class

Neural Networks

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

(Before) Linear score function:

(Now) 2-layer Neural Network

(Before) Linear score function:

(Now) 2-layer Neural Network

x h s
Input:
3072

Hidden layer:
100

Output: 10

W1 W2

Neural Networks

(Before) Linear score function:

(Now) 2-layer Neural Network

x h s
Input:
3072

Hidden layer:
100

Output: 10

Can use different templates to
cover multiple modes of a class

W1 W2

Neural Networks

Most templates not interpretable (Before) Linear score function:

(Now) 2-layer Neural Network

x h s
Input:
3072

Hidden layer:
100

Output: 10

W1 W2

Neural Networks

x W1 sW6

Input:
3072

Output: 10

h1 W2 h2 W3 h3 W4 h4 W5 h5

Depth = number of layers

Width:
Size of
each
layer

Deep Neural Networks

2-layer Neural Network

The function
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Activation Functions

2-layer Neural Network

The function
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

Without activation function:

Activation Functions

2-layer Neural Network

The function
is called “Rectified Linear Unit”

This is called the activation function of
the neural network

→ Linear classifier

Activation Functions

Without activation function:

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation Functions

ReLU

Activation Functions

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Feature Transform

x1

x2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

x1

x2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

h1

Feature transform:
h = Wx

h2

Feature Transform

x1

x2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

h1

A
AB B

C C D

D
Feature transform:

h = Wx

h2

Feature Transform

x1

Points not linearly
separable in original space

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

x2

Feature Transform

x1

x2

h1

h2

h = Wx

Points not linearly
separable in original space

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Not linearly separable
in feature space

Feature Transform

Feature transform:

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h = ReLU(Wx)

h2

Feature Transform

Feature transform:

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h = ReLU(Wx)

A
A

h2

Feature Transform

Feature transform:

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:A
AB B

B is projected
onto +h2 axis

h2

Feature Transform

h = ReLU(Wx)

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:A
AB B

B is projected
onto +h2 axis

D

D

D projected
onto +h1 axis

Feature Transform

h = ReLU(Wx)

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:A
AB B

B is projected
onto +h2 axis

D

D

D projected
onto +h1 axis

C C
C is projected
onto origin

Feature Transform

h = ReLU(Wx)

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = Wx

Points not linearly
separable in original space

Feature Transform

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Points not linearly
separable in original space

Feature Transform

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Points are linearly
separable in features space!

Points not linearly
separable in original space

Feature Transform

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Points are linearly
separable in features space!

Points not linearly
separable in original space

Linear classifier in feature
space gives nonlinear
classifier in original space

Feature Transform

Setting the number of layers and their sizes

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units

Regularization

Data loss: Model predictions

should match training data
Regularization: Prevent the model

from doing too well on training data

Regularization with constant number of layers

Neural Net sample code

Initialize weights
and data

Neural Net sample code

Initialize weights
and data

Compute loss
(sigmoid activation,
L2 loss)

Neural Net sample code

Initialize weights
and data

Neural Net sample code

Compute loss
(sigmoid activation,
L2 loss)

Compute
gradients

SGD
step

Initialize weights
and data

Compute loss
(sigmoid activation,
L2 loss)

Compute
gradients

SGD
step

Neural Net sample code

Problem: So far our
classifiers don’t
respect the spatial
structure of images

Input image
(2, 2)

(4,)

56

231

24

2

56 231

24 2

Flatten lattice into vector

Spatial Information

Problem: So far our
neural networks
don’t respect the
spatial structure of
images

Input image
(2, 2) (4,)

56

231

24

2

56 231

24 2

Flatten lattice into vector

Spatial Information

Problem: So far our
neural networks
don’t respect the
spatial structure of
images

Input image
(2, 2) (4,)

56

231

24

2

56 231

24 2

Flatten lattice into vector

Spatial Information

Solution: Define new
computational
operators

Components of a Fully-Connected Network

Fully-Connected Layers Activation Function

x h s

Components of a Convolutional Network

Convolution Layers Pooling Layers

Fully-Connected Layers Activation Function

Normalization

x h s

Components of a Convolutional Network

Convolution Layers Pooling Layers

Fully-Connected Layers Activation Function

Normalization

x h s

Fully-Connected Layer

3072
1

32x32x3 image -> flatten to 3072 x 1

10 x 3072
weights

OutputInput

1
10

Fully-Connected Layer

3072
1

32x32x3 image -> flatten to 3072 x 1

10 x 3072
weights

OutputInput

1 number:
the result of taking a dot
product between a row of W
and the input (a 3072-
dimensional dot product)

1
10

Convolution Layer

32 width

depth /
channels

3

32 height

3x32x32 image: preserve structure

Convolution Layer

3x32x32 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32 width

depth /
channels

3

32 height

3x5x5 filter

Convolution Layer

3x32x32 image

32 height

3x5x5 filter

Filters always extend the full
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32 width

depth /
channels

3

Convolution Layer

32

3

3x32x32 image

3x5x5 filter

32
1 number:
the result of taking a dot product between the filter
and a small 3x5x5 chunk of the image
(i.e. 3*5*5 = 75-dimensional dot product + bias)

Convolution Layer

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

1x28x28
activation map

1

28

28

Convolution Layer

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over
all spatial locations

two 1x28x28
activation map

1 1

28

28 28

Consider repeating with
a second (green) filter:

Convolution Layer

3x32x32 image

32

Consider 6 filters,
each 3x5x5

Convolution
Layer

6x3x5x5
filters

32

Stack activations to get a
6x28x28 output image

3

28x28 grid, at each
point a 6-dim vector

Convolution Layer

3x32x32 image Also 6-dim bias vector:

32

28x28 grid, at each
point a 6-dim vector

Convolution
Layer

6x3x5x5
filters

32

Stack activations to get a
6x28x28 output image

3

Convolution Layer

3x32x32 image Also 6-dim bias vector:

32

6 activation maps,
each 1x28x28

Convolution
Layer

6x3x5x5
filters

32

Stack activations to get a
6x28x28 output image

3

Convolution Layer

32

3

2x3x32x32
Batch of images

32

2x6x28x28
Batch of outputs

Also 6-dim bias vector:

Convolution
Layer

6x3x5x5
filters

Convolution Layer

W

Cin

N x Cin x H x W
Batch of images

H

N x Cout x H’ x W’
Batch of outputs

Also Cout-dim bias vector:

Convolution
Layer

Cout x Cinx Kw x Kh

filters
Cout

32

W1: 6x3x5x5

32 b1: 6 28

3

Input:
N x 3 x 32 x 32

28

6

First hidden layer:
N x 6 x 28 x 28

26

10
Second hidden layer:

N x 10 x 26 x 26

26

….

Stacking Convolutions

W2: 10x6x3x3
b2: 10

Conv Conv Conv

W3: 12x10x3x3
b3: 12

W1: 6x3x5x5

32 b1: 6

32

28

28

26

26

….

Stacking Convolutions: Add Non-linearity

W2: 10x6x3x3
b2: 10

Conv

W3: 12x10x3x3
b3: 12

ReLU Conv ReLU Conv ReLU

3

Input:
N x 3 x 32 x 32

6

First hidden layer:
N x 6 x 28 x 28

10
Second hidden layer:

N x 10 x 26 x 26

32

W1: 6x3x5x5

28

28

26

26

….

What do convolutional filters learn?

W2: 10x6x3x3
b2: 10

Conv

W3: 12x10x3x3
b3: 12

ReLU Conv ReLU Conv ReLU

3

Input:
N x 3 x 32 x 32

6

First hidden layer:
N x 6 x 28 x 28

10
Second hidden layer:

N x 10 x 26 x 26

W1: 6x3x5x5

32 b1: 6

32

28

3

Input:
N x 3 x 32 x 32

28

6

First hidden layer:
N x 6 x 28 x 28

What do convolutional filters learn?

Conv ReLU

Linear classifier: One template per class

W1: 6x3x5x5W1: 6x3x5x5

32 b1: 6

28

What do convolutional filters learn?

Conv ReLU

MLP: Bank of whole-image templates

32 28

3

Input:
N x 3 x 32 x 32

6

First hidden layer:
N x 6 x 28 x 28

W1: 6x3x5x5W1: 6x3x5x5

32 b1: 6

28

What do convolutional filters learn?

Conv ReLU

First-layer conv filters: local image templates
(Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

3

Input:
N x 3 x 32 x 32

6

First hidden layer:
N x 6 x 28 x 28

W1: 6x3x5x5W1: 6x3x5x5

32 b1: 6

32 28

	Slide 1: Deep Learning
	Slide 2: First classifier: Nearest Neighbor
	Slide 3: Example
	Slide 4: Linear classifiers : Motivation
	Slide 5: f(x,W) = Wx
	Slide 6: f(x,W) = Wx+b
	Slide 7: Loss Function
	Slide 8: Hinge loss
	Slide 9
	Slide 10: Linear Classifier
	Slide 11: Gradient Descent
	Slide 12
	Slide 13: Gradient Noise
	Slide 14: Adam
	Slide 15: Summary
	Slide 16: Cifar10 Linear Classifier
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Linear Classifiers
	Slide 25: Linear Classifiers shortcomings
	Slide 26: Apply Transformations
	Slide 27: Apply Transformations
	Slide 28: Apply Transformations
	Slide 29: Apply Transformations
	Slide 30: Example: Color Histogram
	Slide 31: Example: Histogram of Oriented Gradients (HoG)
	Slide 32
	Slide 33: Image Features
	Slide 34: Image Features
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Activation Functions
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Feature Transform
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Setting the number of layers and their sizes
	Slide 66: Regularization
	Slide 67
	Slide 68: Neural Net sample code
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Spatial Information
	Slide 74: Spatial Information
	Slide 75: Spatial Information
	Slide 76: Components of a Fully-Connected Network
	Slide 77: Components of a Convolutional Network
	Slide 78: Components of a Convolutional Network
	Slide 79: Fully-Connected Layer
	Slide 80: Fully-Connected Layer
	Slide 81: Convolution Layer
	Slide 82: Convolution Layer
	Slide 83: Convolution Layer
	Slide 84: Convolution Layer
	Slide 85: Convolution Layer
	Slide 86: Convolution Layer
	Slide 87: Convolution Layer
	Slide 88: Convolution Layer
	Slide 89: Convolution Layer
	Slide 90: Convolution Layer
	Slide 91: Convolution Layer
	Slide 92: Stacking Convolutions
	Slide 93: Stacking Convolutions: Add Non-linearity
	Slide 94: What do convolutional filters learn?
	Slide 95: What do convolutional filters learn?
	Slide 96: What do convolutional filters learn?
	Slide 97: What do convolutional filters learn?

