Deep Learning

First classifier: Nearest Neighbor

```
def train(images, labels):
    # Machine learning!
    return model
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Memorize all data and labels

Predict the label
\longrightarrow of the most similar training image

Example

Linear classifiers: Motivation

- kNN produce decision boundaries by calculating them during prediction.
- Can we define a (simple) function during training to define decision boundaries directly?

Parametric Approach: Linear Classifier

Image

$$
f(x, W)=W x
$$

10 numbers defining class scores

parameters or weights

Parametric Approach: Linear Classifier

$$
\mathbf{w}_{1} \cdot \mathbf{x}=\mathbf{w}_{1,1}{ }^{*} \mathrm{x}_{1}+\ldots+\mathbf{W}_{1,3072}{ }^{*} \mathrm{X}_{3072} \quad \text { Shape: }(10,3072)
$$

$f(x, W)=W x+b$

Loss Function

L: Metric to assess what loss of data classification our model incurs

Hinge loss

Cross-Entropy Loss
 $L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)$

Linear Classifier

optimization

Gradient Descent

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
    dw = compute_gradient(loss_fn, data, w)
    w -= learning_rate * dw
```


Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

Problems with SGD

Gradients are calculated from

 minibatches \rightarrow they can be noisy$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)
\end{aligned}
$$

SGD + Momentum

Local Minima

Saddle points

Gradient Noise

Adam

SGD

SGD+Momentum

RMSProp

Adam

Summary

1. Use Linear Models for image classification problems
2. Use Loss Functions to express preferences over different selection of weights

$$
\begin{aligned}
L_{i} & =-\log \left(\frac{e^{s_{y}}}{\sum_{j} e^{s_{j}}}\right) \text { Softmax } \\
L_{i} & =\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
L & =\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W)
\end{aligned}
$$

3. Use Stochastic Gradient Descent to minimize our loss functions and train the model
```
v = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    v = rho * v + dw
    w -= learning_rate * v
```


Cifar10 Linear Classifier

optimization

Geometric Interpretation: Linear Classifier

$f(x, W)=W x+b$

Array of $32 \times 32 \times 3$ numbers (3072 numbers total)

Geometric Interpretation: Linear Classifier

Visual Interpretation: Linear Classifier

Flatten tensors into a vector

Linear classifier has one "template" per category

Visual Interpretation: Linear Classifier

Flatten tensors into a vector

A single template cannot capture multiple modes of the data

Linear Classifiers

Geometric Interpretation

Hyperplanes separating space

Linear Classifiers shortcomings

Geometric Viewpoint

Some training data can't be separated with a hyperplane

Visual Viewpoint

One template per class: Can't recognize different modes of a class

Apply Transformations

Transformation

Extract features using transformations

Apply Transformations

Extract features using transformations

Apply Transformations

Apply Transformations

Example: Color Histogram

Example: Histogram of Oriented Gradients (HoG)

Input image

Histogram of Oriented Gradients

Image Feature Aggregation

Image Features

Feature Extraction

Image Features

Feature Extraction

10 numbers giving
training scores for classes

Neural Networks
(Before) Linear score function:

$$
\begin{gathered}
f=W x \\
x \in \mathbb{R}^{D}, W \in \mathbb{R}^{C \times D}
\end{gathered}
$$

Neural Networks
(Before) Linear score function:

$$
f=W x
$$

(Now) 2-layer Neural Network

$$
f=W_{2} \max \left(0, W_{1} x\right)
$$

$$
W_{2} \in \mathbb{R}^{C \times H} \quad W_{1} \in \mathbb{R}^{H \times D} \quad x \in \mathbb{R}^{D}
$$

Neural Networks

(Before) Linear score function:

$$
f=W x
$$

(Now) 2-layer Neural Network $f=W_{2} \max \left(0, W_{1} x\right)$ or 3-layer Neural Network

$$
f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)
$$

$$
W_{3} \in \mathbb{R}^{C \times H_{2}} \quad W_{2} \in \mathbb{R}^{H_{2} \times H_{1}} \quad W_{1} \in \mathbb{R}^{H_{1} \times D} \quad x \in \mathbb{R}^{D}
$$

Neural Networks

$$
f=W x
$$

(Before) Linear score function: $f=W_{2} \max \left(0, W_{1} x\right)$
(Now) 2-layer Neural Network

Neural Networks

(Before) Linear score function:

$$
f=W x
$$

(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Element (i, j) of W_{1} gives the effect on h_{i} from x_{j}

100

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

(Before) Linear score function:

$$
f=W x
$$

(Now) 2-layer Neural Network

$$
f=W_{2} \max \left(0, W_{1} x\right)
$$

Element (i, j) of W_{1} gives the effect on h_{i} from x_{j}

All elements of x affect all elements of h

100

Fully-connected neural network Also "Multi-Layer Perceptron" (MLP)

Element (i, j) of W_{2} gives the effect on s_{i} from h_{j}

All elements of h affect all elements of s

Neural Networks

(Before) Linear score function:

Linear classifier: One template per class

(Now) 2-layer Neural Network
100
$x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Neural Networks

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural Networks

Can use different templates to cover multiple modes of a class

(Before) Linear score function:
(Now) 2-layer Neural Network
 100

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Neural Networks

Most templates not interpretable

(Before) Linear score function:
(Now) 2-layer Neural Network

$$
100
$$

$$
x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}
$$

Deep Neural Networks

Activation Functions

2-layer Neural Network

$$
f=W_{2} \max \left(0, W_{1} x\right)
$$

The function $\operatorname{ReLU}(z)=\max (0, z)$ is called "Rectified Linear Unit"

This is called the activation function of the neural network

Activation Functions

2-layer Neural Network

$$
f=W_{2} \max \left(0, W_{1} x\right)
$$

The function $\operatorname{ReLU}(z)=\max (0, z)$ is called "Rectified Linear Unit"

This is called the activation function of the neural network

Without activation function:

$$
s=W_{2} W_{1} x
$$

Activation Functions

2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

The function $\operatorname{Re} L U(z)=\max (0, z)$ is called "Rectified Linear Unit"

This is called the activation function of the neural network

Without activation function:

$$
\begin{aligned}
& s=W_{2} W_{1} x \\
& W_{3}= W_{2} W_{1} \in \mathbb{R}^{C \times H} \\
& \rightarrow \text { Linear classifier }
\end{aligned}
$$

Activation Functions

Sigmoid

$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ReLU
$\max (0, x)$

Leaky ReLU $\max (0.1 x, x)$

Maxout

$\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)$

ELU

$$
\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}
$$

Activation Functions

Sigmoid

$\sigma(x)=\frac{1}{1+e^{-x}}$

tanh
$\tanh (x)$

ReLU
$\max (0, x)$

Leaky ReLU

 $\max (0.1 x, x)$

Maxout

$$
\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)
$$

ELU

$$
\begin{cases}x & x \geq 0 \\ \alpha\left(e^{x}-1\right) & x<0\end{cases}
$$

Feature Transform

Consider a linear transform: $h=W x$ Where x , h are both 2-dimensional

Feature Transform

Consider a linear transform: $h=W x$ Where x , h are both 2-dimensional

Feature Transform
Consider a linear transform: $h=W x$ Where x , h are both 2-dimensional

Feature Transform

Points not linearly
separable in original space

Consider a linear transform: $h=W x$ Where x , h are both 2-dimensional

Feature Transform

Points not linearly
separable in original space

Consider a linear transform: $h=W x$ Where x , h are both 2-dimensional

Not linearly separable

Feature Transform
Consider a neural net hidden layer:
$h=\operatorname{ReLU}(W x)=\max (0, W x)$
Where x , h are both 2-dimensional

Feature Transform
Consider a neural net hidden layer:
$h=\operatorname{ReLU}(W x)=\max (0, W x)$
Where x , h are both 2-dimensional

Feature Transform
Consider a neural net hidden layer:
$h=\operatorname{ReLU}(W x)=\max (0, W x)$
Where x , h are both 2-dimensional

Feature Transform
Consider a neural net hidden layer:
$h=\operatorname{ReLU}(W x)=\max (0, W x)$
Where x , h are both 2-dimensional

Feature Transform
Consider a neural net hidden layer:
$h=\operatorname{ReLU}(W x)=\max (0, W x)$
Where x , h are both 2-dimensional

Feature Transform

Points not linearly
separable in original space

Feature Transform

Points not linearly
separable in original space

Feature Transform

Points not linearly
separable in original space

Feature Transform

Points not linearly
separable in original space

Linear classifier in feature space gives nonlinear classifier in original space

Consider a neural net hidden layer:
$h=\operatorname{ReLU}(W x)=\max (0, W x)$
Where x , h are both 2-dimensional

Feature transform: $\xrightarrow{\mathrm{h}=\operatorname{ReLU}(\mathrm{Wx})}$

h1

Points are linearly
separable in features space!

Setting the number of layers and their sizes

More hidden units = more capacity

Regularization

$$
L(W)=\underbrace{\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(f\left(x_{i}, W\right), y_{i}\right)}+\underbrace{\lambda R(W)}
$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing too well on training data

Regularization with constant number of layers

Neural Net sample code

hidden layer
import numpy as np
from numpy. random import randn

N, Din, H, Dout = 64, 1000, 100, 10 $x, y=r a n d n(N, D i n), ~ r a n d n(N, ~ D o u t) ~$ w1, w2 = randn(Din, H), randn(H, Dout) for t in range(10000):
h = $1.0 /(1.0+n p . \exp (-x \cdot \operatorname{dot}(w 1)))$
y_pred $=$ h.dot(w2)
loss = np.square(y_pred -y$).$ sum()
dy_pred $=2.0 *\left(y _p r e d-y\right)$
dw2 = h.T.dot(dy_pred)
dh = dy_pred.dot(w2.T)
$\mathrm{dw} 1=\mathrm{x} \cdot \mathrm{T} . \operatorname{dot}(\mathrm{dh} * \mathrm{~h} *(1-\mathrm{h}))$
$\mathrm{w} 1-=1 \mathrm{e}-4 * \mathrm{dw} 1$
w2 -= 1e-4 * dw2

Neural Net sample code

import numpy as np
from numpy. random import randn

N, Din, H, Dout $=64,1000,100,10$ $x, y=r a n d n(N, D i n), ~ r a n d n(N, ~ D o u t)$ w1, w2 = randn(Din, H), randn(H, Dout) for t in range(10000):
$h=1.0 /(1.0+n p \cdot \exp (-x \cdot \operatorname{dot}(w 1)))$
y_pred $=$ h.dot(w2)
loss $=$ np.square $\left(y _p r e d-y\right) . s u m()$
dy_pred $=2.0 *\left(y _p r e d-y\right)$
dw2 = h.T.dot(dy_pred)
dh = dy_pred.dot(w2.T)
$\mathrm{dw} 1=\mathrm{x} \cdot \mathrm{T} \cdot \operatorname{dot}(\mathrm{dh} * \mathrm{~h} *(1-\mathrm{h}))$
$\mathrm{w} 1-=1 \mathrm{e}-4 * \mathrm{dw} 1$
w2 -= 1e-4 * dw2

Neural Net sample code

import numpy as np
from numpy. random import randn

N, Din, H, Dout $=64,1000,100,10$ $\mathrm{x}, \mathrm{y}=$ randn(N, Din), randn(N, Dout) w1, w2 = randn(Din, H), randn(H, Dout) for t in range(10000):
$h=1.0 /(1.0+n p \cdot \exp (-x \cdot \operatorname{dot}(w 1)))$

$$
\text { y_pred }=\text { h.dot(w2) }
$$

$$
\text { loss }=\text { np.square }\left(y _p r e d-y\right) . s u m()
$$

$$
\text { dy_pred }=2.0 *\left(y _p r e d-y\right)
$$

dw2 = h.T.dot(dy_pred)
dh = dy_pred.dot(w2.T)

$$
\mathrm{dw} 1=\mathrm{x} \cdot \mathrm{~T} \cdot \operatorname{dot}(\mathrm{dh} * \mathrm{~h} *(1-\mathrm{h}))
$$

$$
\mathrm{w} 1-=1 \mathrm{e}-4 * \mathrm{dw} 1
$$

$$
\mathrm{w} 2-=1 \mathrm{e}-4 * \mathrm{dw} 2
$$

Neural Net sample code

Initialize weights and data

Compute loss (sigmoid activation, L2 loss)

Compute gradients
import numpy as np
from numpy. random import randn

N, Din, H, Dout = 64, 1000, 100, 10 $x, y=r a n d n(N, D i n), ~ r a n d n(N, ~ D o u t)$ w1, w2 = randn(Din, H), randn(H, Dout) for t in range(10000):

$$
\text { h = } 1.0 /(1.0+n p . \exp (-x . \operatorname{dot}(w 1)))
$$

y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()

$$
\text { dy_pred }=2.0 *\left(y _p r e d-y\right)
$$

dw2 = h.T.dot(dy_pred)
dh = dy_pred.dot(w2.T)

$$
\mathrm{dw} 1=\mathrm{x} \cdot \mathrm{~T} \cdot \operatorname{dot}(\mathrm{dh} * \mathrm{~h} *(1-\mathrm{h}))
$$

$$
\mathrm{w} 1-=1 \mathrm{e}-4 * \mathrm{dw} 1
$$

$$
\mathrm{w} 2-=1 \mathrm{e}-4 * \mathrm{dw} 2
$$

Neural Net sample code

import numpy as np
from numpy. random import randn

N, Din, H, Dout = 64, 1000, 100, 10 $x, y=r a n d n(N, D i n), ~ r a n d n(N, ~ D o u t)$ w1, w2 = randn(Din, H), randn(H, Dout) for t in range(10000):

$$
\text { h = } 1.0 /(1.0+n p . \exp (-x . \operatorname{dot}(w 1)))
$$

y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()

$$
\text { dy_pred }=2.0 *\left(y _p r e d-y\right)
$$

dw2 = h.T.dot(dy_pred)
dh = dy_pred.dot(w2.T)

$$
\mathrm{dw} 1=\mathrm{x} \cdot \mathrm{~T} \cdot \operatorname{dot}(\mathrm{dh} * \mathrm{~h} *(1-\mathrm{h}))
$$

$$
\mathrm{w} 1-=1 \mathrm{e}-4 * \mathrm{dw} 1
$$

$$
\mathrm{w} 2-=1 \mathrm{e}-4 * \mathrm{dw} 2
$$

Spatial Information

$$
f=W_{2} \max \left(0, W_{1} x\right)
$$

Flatten lattice into vector
Input image
$(2,2)$

56
231
24
2

Histogram of Oriented Gradients

(4,)

Spatial Information

$$
f=W_{2} \max \left(0, W_{1} x\right)
$$

Flatten lattice into vector

Spatial Information

$f=W_{2} \max \left(0, W_{1} x\right)$
Flatten lattice into vector

Components of a Fully-Connected Network

Fully-Connected Layers

Activation Function

Components of a Convolutional Network

Fully-Connected Layers

Convolution Layers

Activation Function

Normalization

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

Components of a Convolutional Network

Fully-Connected Layers

Convolution Layers
Pooling Layers

Activation Function

Normalization

Fully-Connected Layer
$32 \times 32 \times 3$ image -> flatten to 3072×1

Fully-Connected Layer

$32 \times 32 \times 3$ image -> flatten to 3072×1
$1 \xrightarrow{\square}$

Convolution Layer

$3 \times 32 \times 32$ image: preserve structure

Convolution Layer

$3 \times 32 \times 32$ image

$3 \times 5 \times 5$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

$3 \times 32 \times 32$ image

Filters always extend the full depth of the input volume

$3 \times 5 \times 5$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

$3 \times 32 \times 32$ image

1 number:

the result of taking a dot product between the filter and a small $3 \times 5 \times 5$ chunk of the image
(i.e. $3 * 5 * 5=75$-dimensional dot product + bias)
$w^{T} x+b$

Convolution Layer

$3 \times 32 \times 32$ image

convolve (slide) over all spatial locations

Convolution Layer
$3 \times 32 \times 32$ image

two $1 \times 28 \times 28$
activation map
convolve (slide) over all spatial locations

Convolution Layer
28×28 grid, at each point a 6 -dim vector

3×32×32 image

Consider 6 filters, each $3 x 5 x 5$

Stack activations to get a $6 \times 28 \times 28$ output image

Convolution Layer

3×32×32 image

Also 6-dim bias vector:

28×28 grid, at each point a 6-dim vector

Stack activations to get a $6 \times 28 \times 28$ output image

Convolution Layer
3×32×32 image

Also 6-dim bias vector:

6 activation maps, each $1 \times 28 \times 28$

Stack activations to get a $6 \times 28 \times 28$ output image

Batch of images

Convolution Layer $\mathrm{N} \times \mathrm{C}_{\text {in }} \times \mathrm{H} \times \mathrm{W}$ Batch of images

Also $\mathrm{C}_{\text {out }}$-dim bias vector:

Convolution
Layer
$\mathrm{N} \times \mathrm{C}_{\text {out }} \times \mathrm{H}^{\prime} \times \mathrm{W}^{\prime}$ Batch of outputs

Stacking Convolutions

Stacking Convolutions: Add Non-linearity

What do convolutional filters learn?

What do convolutional filters learn?

Linear classifier: One template per class

Input:
$\mathrm{N} \times 3 \times 32 \times 32$

First hidden layer:

$$
N \times 6 \times 28 \times 28
$$

What do convolutional filters learn?

Input:
$\mathrm{N} \times 3 \times 32 \times 32$

First hidden layer:
$N \times 6 \times 28 \times 28$

MLP: Bank of whole-image templates

What do convolutional filters learn?

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each $3 \times 11 \times 11$

