## **Deep Learning**

#### First classifier: Nearest Neighbor

def train(images, labels):
 # Machine learning!
 return model

Memorize all data and labels

def predict(model, test\_images):
 # Use model to predict labels
 return test\_labels

Predict the label
 of the most similar training image

#### Example



**Decision boundary** is the boundary between two classification regions

Decision boundaries can be noisy; affected by outliers

**X**<sub>2</sub>

# Linear classifiers : Motivation

- kNN produce decision boundaries by calculating them during prediction.
- Can we define a (simple) function during training to define decision boundaries directly?



Parametric Approach: Linear Classifier



#### Parametric Approach: Linear Classifier



#### **Loss Function**



#### L: Metric to assess what loss of data classification our model incurs

# Hinge loss



**Cross-Entropy Loss** 
$$L_i = -\log(\frac{e^{sy_i}}{\sum_j e^{s_j}})$$



#### Linear Classifier

#### optimization



# **Gradient Descent**

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
   dw = compute_gradient(loss_fn, data, w)
   w -= learning_rate * dw
```

#### Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate



#### Problems with SGD

Gradients are calculated from minibatches  $\rightarrow$  they can be **noisy** 

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^N \nabla_W L_i(x_i, y_i, W)$$



#### SGD + Momentum



#### **Gradient Noise**



#### Adam





#### Summary

- 1. Use Linear Models for image classification problems
- 2. Use Loss Functions to express preferences over different selection of weights
- Use Stochastic Gradient
   Descent to minimize our loss functions and train the model

$$s = f(x; W) = Wx$$

$$egin{aligned} L_i &= -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \,\,\, ext{Softmax} \ L_i &= \sum_{j 
eq y_i} \max(0, s_j - s_{y_i} + 1) \ L &= rac{1}{N} \sum_{i=1}^N L_i + R(W) \end{aligned}$$

v = 0
for t in range(num\_steps):
 dw = compute\_gradient(w)
 v = rho \* v + dw
 w -= learning\_rate \* v



## Cifar10 Linear Classifier







f(x,W) = Wx + b



Array of **32x32x3** numbers (3072 numbers total)









# Visual Interpretation: Linear Classifier

Linear classifier has 56 0.1 0.2 -0.5 2.0 1.1 -96.8 Cat score one "template" per 56 231 231 category 1.3 3.2 1.5 2.1 0.0 437.9 +Dog score 24 0.25 0.2 -0.3 0 -1.2 61.95 Ship score Input image 2 b W Χ

Flatten tensors into a vector



# Visual Interpretation: Linear Classifier





# **Linear Classifiers**

Algebraic Interpretation

f(x,W) = Wx



**Visual Interpretation** 

# One template per class



#### **Geometric Interpretation**

# Hyperplanes separating space



# Linear Classifiers shortcomings

#### **Geometric Viewpoint**



**Visual Viewpoint** 



Some training data can't be separated with a hyperplane One template per class: Can't recognize different modes of a class



Extract features using transformations



Extract features using transformations





#### Example: Color Histogram



#### Image B





#### Example: Histogram of Oriented Gradients (HoG)

Input image



Histogram of Oriented Gradients



Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

### Image Feature Aggregation







#### Neural Networks

(**Before**) Linear score function:

# $\boldsymbol{f} = \boldsymbol{W}\boldsymbol{x}$ $x \in \mathbb{R}^{D}, W \in \mathbb{R}^{C \times D}$

#### Neural Networks

(**Before**) Linear score function:

(Now) 2-layer Neural Network

 $W_2$ 

$$egin{aligned} & f = Wx \ & f = W_2 \max(0, W_1 x) \end{aligned}$$
 $\in \mathbb{R}^{C imes H} & W_1 \in \mathbb{R}^{H imes D} & x \in \mathbb{R}^D \end{aligned}$
(**Before**) Linear score function: f = Wx(**Now**) 2-layer Neural Network  $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network  $f = W_3 \max(0, W_2 \max(0, W_1 x))$  $W_3 \in \mathbb{R}^{C \times H_2} \quad W_2 \in \mathbb{R}^{H_2 \times H_1} \quad W_1 \in \mathbb{R}^{H_1 \times D} \quad x \in \mathbb{R}^D$ 

(Before) Linear score function:

$$egin{aligned} f &= Wx \ f &= W_2 \max(0, W_1 x) \end{aligned}$$







Also "Multi-Layer Perceptron" (MLP)

Element (i, j) of  $W_2$ gives the effect on s<sub>i</sub> from h<sub>i</sub>

All elements

of h affect all

elements of s

(Before) Linear score function:

(Now) 2-layer Neural Network



 $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$ 

#### Linear classifier: One template per class





(Before) Linear score function:



Can use different templates to cover multiple modes of a class



(Before) Linear score function:



Most templates not interpretable



(Before) Linear score function:



#### **Deep Neural Networks**



 $s = W_6 \max(0, W_6 \max(0, W_5 \max(0, W_4 \max(0, W_3 \max(0, W_2 \max(0, W_1 x))))))$ 

2-layer Neural Network

The function ReLU(z) = max(0, z) is called "Rectified Linear Unit"

$$f=W_2\max(0,W_1x)$$

This is called the **activation function** of the neural network



2-layer Neural Network

The function ReLU(z) = max(0, z) is called "Rectified Linear Unit"



This is called the **activation function** of the neural network

Without activation function:





2-layer Neural Network

The function ReLU(z) = max(0, z) is called "Rectified Linear Unit"

10

$$f=W_2\max(0,W_1x)$$

This is called the **activation function** of the neural network

Without activation function:





## Leaky ReLU $\max(0.1x, x)$



 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$ 





# Leaky ReLU $\max(0.1x, x)$



 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$ 



Consider a linear transform: h = Wx Where x, h are both 2-dimensional





Consider a linear transform: h = Wx Where x, h are both 2-dimensional



Points not linearly separable in original space



#### Consider a linear transform: h = Wx Where x, h are both 2-dimensional













Points not linearly separable in original space



## Setting the number of layers and their sizes



More hidden units = more capacity

#### Regularization

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

**Data loss**: Model predictions should match training data

**Regularization**: Prevent the model from doing *too* well on training data

Regularization with constant number of layers





| 1  | import numpy as np                        |
|----|-------------------------------------------|
| 2  | <pre>from numpy.random import randn</pre> |
| 3  |                                           |
| 4  | N, Din, H, Dout = 64, 1000, 100, 10       |
| 5  | x, y = randn(N, Din), randn(N, Dout)      |
| 6  | w1, w2 = randn(Din, H), randn(H, Dout)    |
| 7  | <pre>for t in range(10000):</pre>         |
| 8  | h = 1.0 / (1.0 + np.exp(-x.dot(w1)))      |
| 9  | y_pred = h.dot(w2)                        |
| 10 | loss = np.square(y_pred - y).sum()        |
| 11 | dy_pred = 2.0 * (y_pred - y)              |
| 12 | dw2 = h.T.dot(dy_pred)                    |
| 13 | $dh = dy_pred_dot(w2.T)$                  |
| 14 | dw1 = x.T.dot(dh * h * (1 - h))           |
| 15 | w1 = 1e - 4 * dw1                         |
| 16 | w2 = 1e - 4 * dw2                         |

1

a cade

-----



Initialize weights and data

import numpy as np 1 2 from numpy.random import randn 3 N, Din, H, Dout = 64, 1000, 100, 104 5 x, y = randn(N, Din), randn(N, Dout) w1, w2 = randn(Din, H), randn(H, Dout) 6 for t in range(10000): 7 h = 1.0 / (1.0 + np.exp(-x.dot(w1)))8 9  $y_pred = h_dot(w2)$  $loss = np.square(y_pred - y).sum()$ 10  $dy_pred = 2.0 * (y_pred - y)$ 11 12  $dw2 = h.T.dot(dy_pred)$ 13  $dh = dy_pred_dot(w2.T)$ dw1 = x.T.dot(dh \* h \* (1 - h))14 w1 = 1e - 4 \* dw115

16 w2 -= 1e-4 \* dw2



import numpy as np 2 from numpy.random import randn 3 N, Din, H, Dout = 64, 1000, 100, 105 x, y = randn(N, Din), randn(N, Dout) w1, w2 = randn(Din, H), randn(H, Dout) for t in range(10000): h = 1.0 / (1.0 + np.exp(-x.dot(w1))) $y_pred = h_dot(w2)$  $loss = np.square(y_pred - y).sum()$  $dy_pred = 2.0 * (y_pred - y)$  $dw2 = h.T.dot(dy_pred)$ 13  $dh = dy_pred_dot(w2.T)$ dw1 = x.T.dot(dh \* h \* (1 - h))14 w1 = 1e - 4 \* dw115 16  $w_2 = 1e - 4 * dw_2$ 



2

import numpy as np

from numpy.random import randn



2

import numpy as np

from numpy.random import randn
# **Spatial Information**

 $f=W_2\max(0,W_1x)$ 

Flatten lattice into vector



Input image (2, 2)



| Histogram of Oriented Gradient                                                                                             | S |
|----------------------------------------------------------------------------------------------------------------------------|---|
| Histogram of Orlented Gradient                                                                                             | S |
|                                                                                                                            |   |
| x <b>111</b> 88 <b>148884445</b> 844448881 <b>4</b> 888<br>x <b>111</b> 88 <b>44888455</b> 86444 <b>5</b> 8821 <b>6</b> 88 |   |

# **Spatial Information**

 $f = W_2 \max(0, W_1 x)$ 

Flatten lattice into vector



**Problem**: So far our neural networks don't respect the spatial structure of images

(4,)

Input image

(2, 2)

# **Spatial Information**

 $f = W_2 \max(0, W_1 x)$ 

Flatten lattice into vector



**Problem**: So far our neural networks don't respect the spatial structure of images

Input image (2, 2)

Solution: Define new computational operators

| 56  |  |
|-----|--|
| 231 |  |
| 24  |  |
| 2   |  |

(4,)

### Components of a Fully-Connected Network

**Fully-Connected Layers** 



**Activation Function** 



## Components of a Convolutional Network

**Fully-Connected Layers** 



**Activation Function** 



**Convolution Layers** 



**Pooling Layers** 



Normalization



## Components of a Convolutional Network

**Fully-Connected Layers** 



**Activation Function** 



**Convolution Layers** 



Pooling Layers



Normalization



### Fully-Connected Layer

#### 32x32x3 image -> flatten to 3072 x 1



### Fully-Connected Layer

32x32x3 image -> flatten to 3072 x 1



### **Convolution Layer**

3x32x32 image: preserve structure



### **Convolution Layer**

### 3x32x32 image



#### 3x5x5 filter

**Convolve** the filter with the image i.e. "slide over the image spatially, computing dot products"



3x32x32 image



Filters always extend the full depth of the input volume

3x5x5 filter

**Convolve** the filter with the image i.e. "slide over the image spatially, computing dot products"

**Convolution Layer** 

### 3x32x32 image





Convolution Layer



two 1x28x28











### Stacking Convolutions



### Stacking Convolutions: Add Non-linearity







#### Linear classifier: One template per class





#### MLP: Bank of whole-image templates





First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)



AlexNet: 64 filters, each 3x11x11