
Deep Learning



First classifier: Nearest Neighbor

Memorize all 

data and labels

Predict the label 

of the most similar 

training image

Lecture 2 -



Example

1-nearest neighbor

Lecture 2 -

x1

x2

Points are 
training 
examples; 
colors give
training
labels

Background colors

give the category 
a test point would 
be assigned

Decision boundary 
is the boundary 
between two 
classification regions

Decision
boundaries can be 
noisy; affected by
outliers



Linear classifiers : Motivation

• kNN produce decision boundaries by calculating them during prediction.

• Can we define a (simple) function during training to define decision 
boundaries directly?

x2

x1



Parametric Approach: Linear Classifier

Image

W
parameters

or weights

f(x,W)
10 numbers defining 

class scores

Lecture 2 -

Array of 32x32x3 numbers 

(3072 numbers total)

f(x,W) = Wx



Parametric Approach: Linear Classifier

f(x,W) = Wx+b

Shape: (10,1)
Shape: (3072,1)

Shape: (10,3072)w1·x=w1,1*x1+…+w1,3072*x3072 



Loss Function

𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

L: Metric to assess what loss of data classification our model incurs



Hinge loss



Cross-Entropy Loss



𝑓(𝑥𝑖 ,𝑊)

𝑥𝑖
 𝑦𝑖

𝑊

𝐿
data loss

regularization loss

optimization

Linear Classifier



Gradient Descent

Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate



Gradients are calculated from 
minibatches→ they can be noisy

Problems with SGD



Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

SGD + Momentum



Adam

SGD

SGD+Momentum  

RMSProp

Adam



Summary

1. Use Linear Models for image 
classification problems

2. Use Loss Functions to express 
preferences over different 
selection of weights

3. Use Stochastic Gradient 
Descent to minimize our loss 
functions and train the model

Softmax
SVM



Cifar10 Linear Classifier

𝑠 = 𝑓(𝑥,𝑊)



f(x,W) = Wx + b

Array of 32x32x3 numbers 
(3072 numbers total)Value of pixel (15, 8, 0)

Airplane
Score

Car Score

Deer ScoreClassifier  
score

Geometric Interpretation: Linear Classifier



f(x,W) = Wx + b

Array of 32x32x3 numbers 
(3072 numbers total)

Pixel
(15, 8, 0)

Car Score
= 0

Pixel
(11, 11, 0)

Car score
increases
this way

Geometric Interpretation: Linear Classifier



f(x,W) = Wx + b

Array of 32x32x3 numbers 
(3072 numbers total)

Pixel
(15, 8, 0)

Car Score
= 0

Car score
increases
this way

Car template 
on this line

Geometric Interpretation: Linear Classifier

Pixel
(11, 11, 0)



f(x,W) = Wx + b

Array of 32x32x3 numbers 
(3072 numbers total)

Pixels

Car Score
= 0

Car score
increases
this way

Car template 
on this line

Geometric Interpretation: Linear Classifier

Pixels



f(x,W) = Wx + b

Array of 32x32x3 numbers 
(3072 numbers total)

Car Score
= 0

Car score
increases
this way

Car template 
on this line

Deer 
Score

Airplane
Score

Geometric Interpretation: Linear Classifier

Pixels

Pixels



Linear classifier has 
one “template” per
category

W

Visual Interpretation: Linear Classifier

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W

Input image

56

231

24

2

56 231

24 2

1.1

3.2

-1.2

+ =

-96.8

437.9

61.95

Cat score

Dog score

Ship score

b

Flatten tensors into a vector

x



A single template 
cannot capture 
multiple modes of
the data

e.g. horse template has 2 heads

Visual Interpretation: Linear Classifier

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W

Input image

56

231

24

2

56 231

24 2

1.1

3.2

-1.2

+ =

-96.8

437.9

61.95

Cat score

Dog score

Ship score

b

Flatten tensors into a vector

x



Linear Classifiers

f(x,W) = Wx

Algebraic Interpretation Visual Interpretation Geometric Interpretation

One template 
per class

Hyperplanes
separating space



Linear Classifiers shortcomings

Geometric Viewpoint Visual Viewpoint

x

y

Some training data 
can’t be separated with 
a hyperplane

One template per class: 
Can’t recognize different 
modes of a class



Apply Transformations

Transformation

x

y

Extract features using transformations



Apply Transformations

f(x, y) = (r(x, y), θ(x, y))

x

y

r

θ

Extract features using transformations



Apply Transformations

f(x, y) = (r(x, y), θ(x, y))

x

y

r

θ

Extract features using transformations
Linear classifier 
in feature space



Apply Transformations

f(x, y) = (r(x, y), θ(x, y))

x

y

r

θ

Linear classifier 
in feature space

Nonlinear classifier in
original space!



Example: Color Histogram



Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions  
Within each region quantize edge  
direction into 9 bins

Example: 320x240 image gets divided  
into 40x30 bins; in each bin there are  9 
numbers so feature vector has  30*40*9 
= 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005



Image Feature Aggregation

𝑓1(𝑥)

𝑥

𝑓2(𝑥)

𝑓3(𝑥)

𝑓1(𝑥) ⊕ 𝑓2(𝑥) ⊕ 𝑓3(𝑥)



Image Features

training

Feature Extraction

f
10 numbers giving  

scores for classes

+
Class Label



Image Features

training

10 numbers giving 
scores for classes

Feature Extraction

f
10 numbers giving  

scores for classes

+
Class Label training



Neural Networks

(Before) Linear score function: 

(Now) 2-layer Neural Network



Neural Networks

(Before) Linear score function: 

(Now) 2-layer Neural Network



(Before) Linear score function: 

(Now) 2-layer Neural Network

or 3-layer Neural Network

Neural Networks



Neural Networks

(Before) Linear score function: 

(Now) 2-layer Neural Network

x hW1 sW2
Input:  
3072

Hidden layer: 
100

Output: 10



Element (i, j) 
of W1 gives 
the effect on 
hi from xj

Element (i, j) 
of W2 gives 
the effect on 
si from hj

x h s
Input:  
3072

Hidden layer: 
100

Output: 10

W1 W2

(Before) Linear score function: 

(Now) 2-layer Neural Network

Neural Networks



(Before) Linear score function: 

(Now) 2-layer Neural Network

Element (i, j) of W1

gives the effect on
hi from xj

All elements
of x affect all
elements of h

Element (i, j) of W2

gives the effect on
si from hj

All elements
of h affect all
elements of s

x hW1 sW2
Input:  
3072

Hidden layer:
Output: 10

100

Fully-connected neural network 
Also “Multi-Layer Perceptron” (MLP)

Neural Networks



Linear classifier: One template per class

Neural Networks

x hW1 sW2
Input:  
3072

Hidden layer: 
100

Output: 10

(Before) Linear score function: 

(Now) 2-layer Neural Network



(Before) Linear score function: 

(Now) 2-layer Neural Network

x h s
Input:  
3072

Hidden layer: 
100

Output: 10

W1 W2

Neural Networks



(Before) Linear score function: 

(Now) 2-layer Neural Network

x h s
Input:  
3072

Hidden layer: 
100

Output: 10

Can use different templates to 
cover multiple modes of a class

W1 W2

Neural Networks



Most templates not interpretable (Before) Linear score function: 

(Now) 2-layer Neural Network

x h s
Input:  
3072

Hidden layer: 
100

Output: 10

W1 W2

Neural Networks



x W1 sW6

Input:  
3072

Output: 10

h1 W2 h2 W3 h3 W4 h4 W5 h5

Depth = number of layers

Width:  
Size of 
each 
layer

Deep Neural Networks



2-layer Neural Network

The function
is called “Rectified Linear Unit”

This is called the activation function of 
the neural network

Activation Functions



2-layer Neural Network

The function
is called “Rectified Linear Unit”

This is called the activation function of 
the neural network

Without activation function:

Activation Functions



2-layer Neural Network

The function
is called “Rectified Linear Unit”

This is called the activation function of 
the neural network

→ Linear classifier

Activation Functions

Without activation function:



Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation Functions



ReLU

Activation Functions

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU



Feature Transform

x1

x2

Consider a linear transform: h = Wx 
Where x, h are both 2-dimensional



x1

x2

Consider a linear transform: h = Wx 
Where x, h are both 2-dimensional

h1

Feature transform: 
h = Wx

h2

Feature Transform



x1

x2

Consider a linear transform: h = Wx 
Where x, h are both 2-dimensional

h1

A
AB B

C C D

D
Feature transform: 

h = Wx

h2

Feature Transform



x1

Points not linearly 
separable in original space

Consider a linear transform: h = Wx 
Where x, h are both 2-dimensional

x2

Feature Transform



x1

x2

h1

h2

h = Wx

Points not linearly 
separable in original space

Consider a linear transform: h = Wx 
Where x, h are both 2-dimensional

Not linearly separable
in feature space

Feature Transform

Feature transform:



x1

x2

Consider a neural net hidden layer: 
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h = ReLU(Wx)

h2

Feature Transform

Feature transform:



x1

x2

Consider a neural net hidden layer: 
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h = ReLU(Wx)

A
A

h2

Feature Transform

Feature transform:



x1

x2

Consider a neural net hidden layer: 
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:A
AB B

B is projected
onto +h2 axis

h2

Feature Transform

h = ReLU(Wx)



x1

x2

Consider a neural net hidden layer: 
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:A
AB B

B is projected
onto +h2 axis

D

D

D projected
onto +h1 axis

Feature Transform

h = ReLU(Wx)



x1

x2

Consider a neural net hidden layer: 
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:A
AB B

B is projected
onto +h2 axis

D

D

D projected
onto +h1 axis

C C
C is projected
onto origin

Feature Transform

h = ReLU(Wx)



x1

x2

Consider a neural net hidden layer: 
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform: 
h = Wx

Points not linearly 
separable in original space

Feature Transform



x1

x2

Consider a neural net hidden layer: 
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform: 
h = ReLU(Wx)

Points not linearly 
separable in original space

Feature Transform



x1

x2

Consider a neural net hidden layer: 
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform: 
h = ReLU(Wx)

Points are linearly 
separable in features space!

Points not linearly 
separable in original space

Feature Transform



x1

x2

Consider a neural net hidden layer: 
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform: 
h = ReLU(Wx)

Points are linearly 
separable in features space!

Points not linearly 
separable in original space

Linear classifier in feature 
space gives nonlinear 
classifier in original space

Feature Transform



Setting the number of layers and their sizes

More hidden units = more capacity

3 hidden units 6 hidden units 20 hidden units



Regularization

Data loss: Model predictions  

should match training data
Regularization: Prevent the model  

from doing too well on training data



Regularization with constant number of layers



Neural Net sample code



Initialize weights 
and data

Neural Net sample code



Initialize weights 
and data

Compute loss 
(sigmoid activation, 
L2 loss)

Neural Net sample code



Initialize weights 
and data

Neural Net sample code

Compute loss 
(sigmoid activation, 
L2 loss)

Compute  
gradients

SGD
step



Initialize weights 
and data

Compute loss 
(sigmoid activation, 
L2 loss)

Compute  
gradients

SGD
step

Neural Net sample code



Problem: So far our 
classifiers don’t 
respect the spatial 
structure of images

Input image 
(2, 2)

(4,)

56

231

24

2

56 231

24 2

Flatten lattice into vector

Spatial Information



Problem: So far our 
neural networks
don’t respect the 
spatial structure of
images

Input image 
(2, 2) (4,)

56

231

24

2

56 231

24 2

Flatten lattice into vector

Spatial Information



Problem: So far our 
neural networks 
don’t respect the 
spatial structure of 
images

Input image 
(2, 2) (4,)

56

231

24

2

56 231

24 2

Flatten lattice into vector

Spatial Information

Solution: Define new 
computational 
operators



Components of a Fully-Connected Network

Fully-Connected Layers Activation Function

x h s



Components of a Convolutional Network

Convolution Layers Pooling Layers

Fully-Connected Layers Activation Function

Normalization

x h s



Components of a Convolutional Network

Convolution Layers Pooling Layers

Fully-Connected Layers Activation Function

Normalization

x h s



Fully-Connected Layer

3072
1

32x32x3 image -> flatten to 3072 x 1

10 x 3072
weights

OutputInput

1
10



Fully-Connected Layer

3072
1

32x32x3 image -> flatten to 3072 x 1

10 x 3072
weights

OutputInput

1 number:
the result of taking a dot 
product between a row of W 
and the input (a 3072-
dimensional dot product)

1
10



Convolution Layer

32 width

depth / 
channels

3

32 height

3x32x32 image: preserve structure



Convolution Layer

3x32x32 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

32 width

depth / 
channels

3

32 height

3x5x5 filter



Convolution Layer

3x32x32 image

32 height

3x5x5 filter

Filters always extend the full 
depth of the input volume

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

32 width

depth / 
channels

3



Convolution Layer

32

3

3x32x32 image

3x5x5 filter

32
1 number:
the result of taking a dot product between the filter 
and a small 3x5x5 chunk of the image
(i.e. 3*5*5 = 75-dimensional dot product + bias)



Convolution Layer

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over 
all spatial locations

1x28x28
activation map

1

28

28



Convolution Layer

32

3

3x32x32 image

3x5x5 filter

32
convolve (slide) over 
all spatial locations

two 1x28x28 
activation map

1 1

28

28 28

Consider repeating with 
a second (green) filter:



Convolution Layer

3x32x32 image

32

Consider 6 filters, 
each 3x5x5

Convolution  
Layer

6x3x5x5  
filters

32

Stack activations to get a 
6x28x28 output image

3

28x28 grid, at each 
point a 6-dim vector



Convolution Layer

3x32x32 image Also 6-dim bias vector:

32

28x28 grid, at each 
point a 6-dim vector

Convolution  
Layer

6x3x5x5  
filters

32

Stack activations to get a 
6x28x28 output image

3



Convolution Layer

3x32x32 image Also 6-dim bias vector:

32

6 activation maps, 
each 1x28x28

Convolution  
Layer

6x3x5x5  
filters

32

Stack activations to get a 
6x28x28 output image

3



Convolution Layer

32

3

2x3x32x32
Batch of images

32

2x6x28x28 
Batch of outputs

Also 6-dim bias vector:

Convolution  
Layer

6x3x5x5  
filters



Convolution Layer

W

Cin

N x Cin x H x W
Batch of images

H

N x Cout x H’ x W’ 
Batch of outputs

Also Cout-dim bias vector:

Convolution  
Layer

Cout x Cinx Kw x Kh 

filters
Cout



32

W1: 6x3x5x5

32 b1: 6 28

3

Input:
N x 3 x 32 x 32

28

6

First hidden layer: 
N x 6 x 28 x 28

26

10
Second hidden layer: 

N x 10 x 26 x 26

26

….

Stacking Convolutions

W2: 10x6x3x3 
b2: 10

Conv Conv Conv

W3: 12x10x3x3 
b3: 12



W1: 6x3x5x5

32 b1: 6

32

28

28

26

26

….

Stacking Convolutions: Add Non-linearity

W2: 10x6x3x3 
b2: 10

Conv

W3: 12x10x3x3 
b3: 12

ReLU Conv ReLU Conv ReLU

3

Input:
N x 3 x 32 x 32

6

First hidden layer: 
N x 6 x 28 x 28

10
Second hidden layer: 

N x 10 x 26 x 26



32

W1: 6x3x5x5

28

28

26

26

….

What do convolutional filters learn?

W2: 10x6x3x3 
b2: 10

Conv

W3: 12x10x3x3 
b3: 12

ReLU Conv ReLU Conv ReLU

3

Input:
N x 3 x 32 x 32

6

First hidden layer: 
N x 6 x 28 x 28

10
Second hidden layer: 

N x 10 x 26 x 26

W1: 6x3x5x5

32 b1: 6



32

28

3

Input:
N x 3 x 32 x 32

28

6

First hidden layer: 
N x 6 x 28 x 28

What do convolutional filters learn?

Conv ReLU

Linear classifier: One template per class

W1: 6x3x5x5W1: 6x3x5x5

32 b1: 6



28

What do convolutional filters learn?

Conv ReLU

MLP: Bank of whole-image templates

32 28

3

Input:
N x 3 x 32 x 32

6

First hidden layer: 
N x 6 x 28 x 28

W1: 6x3x5x5W1: 6x3x5x5

32 b1: 6



28

What do convolutional filters learn?

Conv ReLU

First-layer conv filters: local image templates 
(Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

3

Input:
N x 3 x 32 x 32

6

First hidden layer: 
N x 6 x 28 x 28

W1: 6x3x5x5W1: 6x3x5x5

32 b1: 6

32 28
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