Deep Learning



So far: “Feedforward” Neural Networks

one to one

\ e.g. Image classification

Image -> Label



Recurrent Neural Networks: Process Sequences

one to one one to many
! Pt
! f

\ e.g. Image Captioning:
Image -> sequence of words



Recurrent Neural Networks: Process Sequences

one to one one to many many to one
! Pt !
! ! bt

\ e.g. Video classification:
Sequence of images -> label



Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many
! Pt 1 ! Pt 1
! ! Pt 1 Pt

e.g. Machine Translation: /
Sequence of words -> Sequence of words



Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
! Pt ! Pt 1 Pt
! ! Pt Pt S

e.g. Per-frame video classification: /
Sequence of images -> Sequence of labels



Sequential Processing of Non-Sequential Data

Classify images by taking
a series of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.



Sequential Processing of Non-Sequential Data

Generate images one piece at a time




Recurrent Neural Networks

Key idea: RNNs have an
“internal state” that is
updated as a sequence
is processed




Recurrent Neural Networks

I

new state

fw

/ 0
some function
with parameters W

(

We can process a sequence of vectors x by applying a
y recurrence formula at every time step:

P

xt)

d state

Input vector at
some time step



(Vanilla) Recurrent Neural Networks

The state consists of a single “hidden” vector h:

y hy = fW(ht—h xt)

l (also bias term)

h; = tanh(Wpphi 1 + Wypzy)

Yt — Whyht

Sometimes called a “Vanilla RNN” or an
“Elman RNN” after Prof. Jeffrey Elman




RNN Computational Graph

Initial hidden state
Either set to all O,
Or learn it

ho




RNN Computational Graph




RNN Computational Graph




RNN Computational Graph




RNN Computational Graph

Re-use the same weight matrix at every time-step




RNN Computational Graph (Many to Many)

Y1

Y2

Y3

YT




RNN Computational Graph (Many to Many)

Y1

Y2

Y3

YT




RNN Computational Graph (Many to Many)

Y1

Y2

//’//’ \
Y3 1 Ls Yt 1 le
> h3 hT




RNN Computational Graph (Many to One)




RNN Computational Graph (One to Many)

Y1

Y2

Y3

YT




Sequence to Sequence (seqg2seq)
(Many to one) + (One to many)

Many to one: Encode input
sequence in a single vector

ho > fW hl fW _"hz fW _"h3 > —> hT —
' X X X
W1 1 2 3

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014



Sequence to Sequence (seqg2seq)
(Many to one) + (One to many)

One to many: Produce
output sequence from
single input vector

Many to one: Encode input

sequence in a single vector Vi Y
hO > fW hl > fW —l}hz > fW —'Vh3 —> ' —> hT fW hl fW _'>h2 fW —

—
/ | 1 1 /
W,




Example: Language Modeling

Given characters 1, 2, ..., t,
model predicts character t

Training sequence: "hello”

Vocabulary: [h, e, |, 0]

input layer

input chars:

S oo =

O -0

= |lo~0coO

- |lo~0O0O




Example: Language Modeling

Given characters 1, 2, ..., t,
model predicts character t

hi = tanh(Whnhi—1 + Wanzt)

Training sequence: "hello”

Vocabulary: [h, e, |, 0]

hidden layer

input layer

input chars:

0.3
-0.1
0.9

1
0
0
0
“h”

Y

A4

0.1

-0.5
-0.3

W _hh| ~

- |lo~0co




Example: Language Modeling

Given characters 1, 2, ..., t,
model predicts character t

hi = tanh(Whnhi—1 + Wanzt)

Training sequence: "hello”

Vocabulary: [h, e, |, 0]

target chars:

output layer

hidden layer

input layer

input chars:

“eH

1.0
2.2
-3.0
4.1

|

0.3
-0.1
0.9

1
0
0
0
“h”

\

A4

W_hh| ~




Example: Language Modeling

Given characters 1, 2, ..., t,
model predicts character t

hi = tanh(Whnhi—1 + Wanzt)

Training sequence: "hello”

Vocabulary: [h, e, |, 0]

target chars:] ‘e

output layer

hidden layer

input chars

Given “h”, predict “e”

\4

W_hh| °




lll”

Example: Language Modeling Given “he’, predict

target chars: "€’

Given characters 1, 2, ..., t,

1.0 0.1 0.2
model predicts charactert output layer | 22 D5 15
4.1 1.1 2.2
T TW_hy
0.1 -0.3
h: = tanh(Whhht_l —+ Wmh$t) hidden layer P v hn b
0.3 0.7
T TW_xh
Training sequence: “hello” 0 0
input layer (1) (1)
Vocabulary: [h, e, |, 0] :’ ‘I)

input chars:} “h”



Example: Language Modeling

Given characters 1, 2, ..., t,
model predicts character t

hi = tanh(Whnhi—1 + Wanzt)

Training sequence: "hello”

Vocabulary: [h, e, |, 0]

IIIII

Given “hel”, predict

target chars: "€’ i

1.0 0.5
2.2 0.3

output layer
Putiayer | s o 1.0
4.1 .

hidden layer

input layer

input chars:} “h”




Example: I_a nguage MOdeling Given ”he””’ pVEdICt uo;,

target chars: "€’ i

Given characters 1, 2, ..., t, .~ — _
model predicts character t output layer | 22 08 0.5
4.1 . -1.

ht — taﬂh(Whhht—l —+ W:chﬁ»“t) hidden layer

Training sequence: "hello”

input layer

Vocabulary: [h, e, |, 0] S



Example: Language Modeling

So far: encode inputs
as one-hot-vector

(W11 Wiy Wi3 Wy
(W31 W3y Wh3 Wy

(W31 W3y W33 Wy

S or

0]
Matrix multiply with a one-hot vector just
extracts a column from the weight matrix.

Often extract this into a separate

embedding layer

Sample

Softmax

output layer

hidden layer

input layer

input chars:

llg\
b

.03
A3
.00
.84

T

1.0
2.2
-3.0
4.1

|

0.3
-0.1

L/\

llI

0.9

1
0
0
0
“h"

b
.25 11
.20 17
.05 .68
.50 .03

) )

0.5 0.1
0.3 0.5
1.0 1.9
1.2 -1.1
1.0 0.1

-0.5
-0.3

W_hh| -

O -~00




Example: Language Modeling

So far: encode inputs
as one-hot-vector

(W11 Wiy Wiz Wiy [1] W11

(W31 Wy Wos Wyl [O0] = [wyy

(W3, W3y Wiy Wy (O] (W3,
o

Matrix multiply with a one-hot vector just
extracts a column from the weight matrix.
Often extract this into a separate
embedding layer

target chars:

output layer

hidden layer

input layer

input chars:

uen

1.0
2.2
-3.0
4.1

|

0.3
-0.1
0.9

\4

T

.03
A3
.00

1
0
0
0
“h”

W_hh| -

0.5 0.1
0.3 0.5
-1.0 1.9
1.2 -1.1
1.0 0.1
0.3 > -0.5
0.1 -0.3
t t
.25 A1
.20 17
.05 .68
0 0
1 0
0 1
0 0
“e” “I”




Forward through entire sequence to

BaCkprOpagatlon Th rough T|me compute loss, then backward through

entire sequence to compute gradient

\ 4

\4
\4
\4
\4
\4
\4
\4
\4
\ 4
\ 4
\ 4
\ 4
\ 4
\ 4
\4
\4
\4




Truncated Backpropagation Through Time

Loss

//( / ] \ \\ Run forward and backward
through chunks of the sequence

instead of whole sequence




Truncated Backpropagation Through Time

/1]

I I |

/

Loss

AN\

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller number
of steps



Truncated Backpropagation Through Time

Loss

1IN

/[ I |




THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, —_—
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.
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t first: tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne ‘nhthnee e
at Tirst. plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

l train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

l train more

"“Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.



PANDARUS :

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.



Example: Image Captioning

Recurrent
Neural
Network

START “Straw" “hat"

Convolutional Neural Network
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conv-64
conv-64

maxpool
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FC 0
sof X

Transfer learning: Take
CNN trained on ImageNet,
chop off last layer
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conv-64
conv-64

maxgool

conv-128
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max_pool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096

FC-4096

before:
h = tanh(WXh*X + Whh*h)

now:
h =tanh(W,,,*x + W,,*h + W, *v)
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conv-64
conv-64

maxgool
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max_pool
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maxpool
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maxpool
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conv-512

maxpool

_ FC-4096

FC-4096

il Sample
before: I word and
copy to
h = tanh(th*X + Whh*h) input
ho
NOW: [
h =tanh(W,;,*x + W,,,*h + W, *v)
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maxpool

FC-4096

FC-4096

before:
h = tanh(WXh*X + Whh*h)

now:
h =tanh(W,,,*x + W,,*h + W, *v)

&
yO yl
hO » hil

|

|

Sample

word and
copy to

input




| image |

conv-64
conv-64

maxgool

Sample
word and

I I I copy to

input

conv-128
conv-128

oo EfOTE:
conv-256 h = tanh(WXh*X + Whh*h)

conv-256

>
o
\ 4
-
kY
\ 4
-
N

maxpool

conv-512

conv-512 now: [ \ [
maxpool h = tanh(WXh*X + Whh*h + Wih*v)

conv-512
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maxpool

_FC-4096
FC-4096
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conv-64
conv-64

maxgool

conv-128
conv-128

max_pool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096

FC-4096

before:
h = tanh(WXh*X + Whh*h)

now:
h =tanh(W,,,*x + W,,*h + W, *v)
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|

|
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Sample
word and
copy to
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conv-64

maxgool

conv-128
conv-128

max_pool

conv-256
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maxpool
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conv-512
maxpool

conv-512
conv-512

maxpool
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before:
h = tanh(WXh*X + Whh*h)

now:
h =tanh(W,,,*x + W,,*h + W, *v)

Stop after sampling <END> token

7
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yO0 yl y2 y3 v4
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Image Captioning: Example Results

3 —

*
L
)8

(- g

A cat sitting on a suitcase A cat is sitting on a tree A dog is running in the grass A white teddy bear sitting in
on the floor branch with a frisbee the grass

Two people walking on the A tennis player in action on Two giraffes standing in a A man riding a dirt bike on a
beach with surfboards the court grassy field dirt track



Image Captioning: Failure Cases

% A bird is perched on a
" tree branch

” *Jﬂ:: e . ‘I il @
A woman is holding a cat
in her hand

A manina
baseball uniform
throwing a ball

A woman standing on a beach
holding a surfboard

mouse on a desk



Sequence-to-Sequence with RNNSs

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Yy

EnCOder: ht = fW(Xt, ht-l)

h, h, * hj h,
X1 Xy X3 X4
we are eating bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014



Sequence-to-Sequence with RNNSs

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Yy

From final hidden state predict:

Encoder: h, = fy(X,, hy.1) Initial decoder state s,
Context vector c (often c=hy)

h * h, > hy > h, > So
X1 Xy X3 Xy C
we are eating bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014



Sequence-to-Sequence with RNNSs

Input: Sequence Xy, ... X Decoder: s; = gy(Yt.1, St-1, €)
Output: Sequenceysy, ..., Yy

estamos
From final hidden state predict:
Encoder: h, = fy(x,, h.4) Initial decoder state s, Y1
: , N

Context vector c (often c=hy) ‘

hl > h2 > h3 > h4 > SO > S]_

X1 X2 X3 X4 "L C Yo
we are eating bread [START]

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014



Sequence-to-Sequence with RNNSs

Input: Sequence Xy, ... X Decoder: s; = gy(Yt.1, St-1, €)
Output: Sequenceysy, ..., Yy

estamos comiendo

From final hidden state predict:

Encoder: h, = fy(x,, h.4) Initial decoder state s, Y1 Y2
. , N
Context vector c (often c=hy) ‘ ‘
hl > h2 > h3 > h4 > SO > S]_ _— 52
I S
X1 X, X3 X4 g Yo Y1
we are eating bread [START] estamos

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014



Sequence-to-Sequence with RNNSs

Input: Sequence Xy, ... X Decoder: s; = gy(Yt.1, St-1, €)
Output: Sequenceysy, ..., Yy

estamos comiendo pan [STOP]

From final hidden state predict:

Encoder: h, = fyy(x:, h.4) Initial decoder state s, Y1 Y2 LE Ya
: , Ni.

Context vector c (often c=hy) ‘ ‘ ‘ ‘
h, » h, > h > h, > S, > S —> S, —> 53 — 5,
] ‘ [ [ Tn _fn 1 A —f‘
X1 X, X3 X4 g Yo Y1 Y2 Y3
we are eating bread [START] estamos comiendo pan

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014



Sequence-to-Sequence with RNNSs

Input: Sequence Xy, ... X Decoder: s; = gy(Yt.1, St-1, €)
Output: Sequenceysy, ..., Yy

estamos comiendo pan [STOP]
From final hidden state predict:
Encoder: h, = fyy(x:, h.4) Initial decoder state s, Y1 Y2 LE Ya
: , Ni.
Context vector c (often c=hy) l ‘ ‘ ‘
h, » h, > h > h, > S, > S —> S —> S3 — 5,
] ‘ [ [ Tn _fn 1 A —f‘
X1 X, X3 X4 g Yo Y1 Y2 Y3
we are eating bread Problem: Input sequence [START] estamos comiendo pan

bottlenecked through fixed-
sized vector. What if T=1000?

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurlPS 2014



Sequence-to-Sequence with RNNs and Attention

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Yy

From final hidden state:

Encoder: ht = fw(xtr ht-l) Initial decoder state s,

h, h, * hj > h, So
X1 X X3 Xy
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
€ = faw(Se.1, hi) (fae is an MLP)

From final hidden state:

€11 €12 €13 €14 Initial decoder state s
N A M |

h, * h, > h; * h, " S0

X1 X5 X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
€ = faw(Se.1, hi) (fae is an MLP)

di1 dip di3 di14

t 1 1 1 Normalize alignment scores

softmax . .
_ _ to get attention weights
1 | t I From final hidden state: O<a <1 _q
e e e " dy Didi =

€11 12 13 14 Initial decoder state s

[ N | A | |

h, * h, > h; * h, " S0

X1 X X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Sequence-to-Sequence with RNNs and Attention

X ) ¢ X X
’ ’ 4 N
d11 a1 di3 d14
t t t t
soffmax
t ) t t

AR

From final hidden state:

Initial decoder state s

we are eating bread

:SO

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute (scalar) alignment scores
€ = faw(Se.1, hi) (fae is an MLP)

Normalize alignment scores
to get attention weights
O<ai<l 2iai=1

Compute context vector as linear
combination of hidden states
C = Ziat,ihi



Sequence-to-Sequence with RNNs and Attention

X ) ¢ X X
’ ’ 4 N
d11 a1 di3 d14
t t t t
soffmax
t ) t t

i

From final hidden state:

Initial decoder state s

we are eating

bread

:SO

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

estamos

Y1

|

Sy

|

|

Yo

Compute (scalar) alignment scores
€ = faw(Se.1, hi) (fae is an MLP)

Normalize alignment scores
to get attention weights
O<ai<l 2iai=1

Compute context vector as linear
combination of hidden states
C = Ziat,ihi

Use context vector in
decoder: s; = gy(Yt.1, St.1, Ct)

[START]



Sequence-to-Sequence with RNNs and Attention
)I( )I( )I( )I( Compute (scalar) alignment scores
! i i ! i = Far(Se1, i) (far is an MLP)
di1 dip di3 dig ostamos
t 1 r 1 1 Normalize alighment scores
>OTimax _ _ to get attention weights
t 1 t | From final hidden state: V1 -
. O<ay,i<l 2a,=1
€11 \ €12 €13 €14 Initial decoder state s, ’ ’
I T 1 \ T \ I | ‘ Compute context vector as linear
n \ h \ " \ " ) Y combination of hidden states
! 12 1 1 " S0 T >t Ct = 2idih
] ‘ ‘ ‘ Intuition: Context vector ‘ ‘ Use context vector in
attends to the relevant decoder: s, = 1, Stq, C
Xq X, X3 Xs . der |l Vo t = 8ulYr-1 Se1 Co)
part of the input sequence
[START]

“lemy” = “are eating”
so maybe a;,=a,3=0.45,
a11=a14=0.05

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

we are eating bread



Sequence-to-Sequence with RNNs

X ) ¢ X X
’ ’ 4 N
Ch ChY) dj3 d4
t t t t
soffmax
t ) t t

estamos

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

C1 || Yo

[START]

Repeat: Use s; to compute
new context vector ¢,



Sequence-to-Sequence with RNNs and Attention

X ) ¢ X X
’ ’ 4 N
Ch ChY) d)3 d4
t t t t
soffmax
t ) t t

estamos comiendo

Repeat: Use s; to

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Y1 Y21 compute new context
T ‘ vector ¢,
| Use ¢, to compute s,, y,

1N,

-Psz

C1 || Yo SRR

[START] estamos



Sequence-to-Sequence with RNNs and Attention

X ) ¢ X X
’ ’ 4 N
Ch ChY) d)3 d4
t t t t
soffmax
t ) t t

mm—
L
> N
D

estamos

comiendo

Repeat: Use s; to
Y2 compute new context

:SO

‘ ‘ Intuition: Context vector
attends to the relevant
part of the input sequence
“comiendo” = “eating”

so maybe a,;=a,,=0.05,
a,,=0.1, 2,5=0.8

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

we are eating bread

Yo

[START]

]

‘ vector ¢,

Use ¢, to compute s,, y,

-Psz

SRR

estamos



Sequence-to-Sequence with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

>
=
\ 4
-
N

X1 X

we are

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

\ 4

eating

X3

\ 4

A 4

X4

bread

estamos

Y1

|

comiendo

Y2

—

|

|

|

pan

S1
Cq

2

[STOP]

Yo C Y1 C3 || Y2 Cq | Y3
t t t t
[START] estamos comiendo pan




Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a; ;

Example: English to French g - ) A
. o B tg
translation v ® ,8582E8 38 E
EfS6coDd<szax3 .V
N
Input: “The agreement on the accord
1 sur
European Economic Area was -
sighed in August 1992” zone
économique
européenne
Output: “l'accord sur la zone a
’ . ’ été
économique européenne a -
été signé en aolit 1992 en

aolt
1992

<end>
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a;;

Example: English to French < §
i Q
translation ° 5
o wl
Input: “The agreement on the Diagonal attention means  Jaccord

) words correspond in order
European Economic Area was

signed in August 1992

zone
économique
européenne

Output: “L’'accord sur la zone
économique européenne a
éte signé en aout 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a;;

Example: English to French @ : §
o Q Q.
translation 4 ° 5 8
© W w <
Input: “The agreement on the  Diagonalattention means  faccord
words correspond in order
was
signed in August 1992 zone
économique
européenne
Output: “Uaccord sur la
a

éte signé en aout 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015



Sequence-to-Sequence with RNNs and Attention

Example: English to French
translation

Input: “The agreement on the
was
signed in August 1992

Output: “Uaccord sur la

été signé en aolit 1992

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Visualize attention weights a;;

C
©
(V)
o
(]
ul
)
L

Economic

Diagonal attention means accord
words correspond in order

zone
économique
européenne

Verb conjugation

Diagonal attention means
words correspond in order



Image Captioning with RNNs and Attention

CNN hyt | hoa | has > So

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et,i,j = fatt(st-ll hI,J) €111 €112 €113
€121 | €122 | €123

€131 €132 | €133

CNN hyt | hoa | has > So

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

Alignment scores Attention weights

et,i,j = fatt(st-ll hI,J) €111 | €112 €113 d1,11 | 9112 | 94113

softmax

at,:,: = SOftmaX(et,,) €121 | €122 | €123 T 3121  3d122 3123

€131 €132 | €133 13,1 | 91,32 | 91,33

CNN hyt | hoa | has > So

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et,i,j = fatt(st-ll hI,J) €111 | €112 | €113 d1,1,1 | 91,12 | 91,13
f
a = SOftmaX(et,,) €121 | €122 | €123 m d121 9122 | 3A123
ZI ,Jat ,) €131 €132 €133 d131 9132 133

CNN hyt | hoa | has > So

\ 4

|'
(@)
=

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et,i,j = fatt(st-ll hI,J) €111 | €112 | €113 a11,1 | 9112 | 9,13
— softmax
a L SOftmaX(et,,) €121 | €122 €123 | T> | Q121 | 3127  A123 cat
ZI ,Jatl €131 | €132 | €133 131 | 9132 | 21,33
4 Y1
hut | has h\ I
CNN hyt | hoa | has > So
s | haa | hss [ [
Use a CNN to compute a *O— ¢ || Yo
grid of features for an image
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

et,i,j = fau(St-1, hi,j)
ay .. = softmax(et,:,:) cat

ZI,jat i,j

Y1

CNN hy1 | hop | a3

So S1
h3,1 h3,2 h3,3 \ ‘ ‘

Use a CNN to compute a C1 ] Yo
grid of features for an image t
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

Alignment scores

et,i,j = fatt(st'll hl,J) €11 | €212 | €213
.. = softmax(et,:,:) cat
ZI,jatI S231 | €232 | €233

' Y1
hiy | hiy | hys ]

CNN hy1 | hop | a3

> So S1
h3,1 h3,2 h3,3 \ ‘ ‘

Use a CNN to compute a C1 ] Yo
grid of features for an image t
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et, |,J = fatt( St- 1, h I,J ) €11 | €212 | €213 11 | 12 | A3
softmax
a s T S Oft m a X ( et’ e ) €21 | €322 | €323 | mmmmmp | y1 | Fp2p | 23 cat
Z|, Jat I,j €31 | €232 | €333 dy31 | 9232 | 233

CNN hy1 | hop | a3

> So S1
h3,1 h3,2 h3,3 \ ‘ ‘

Use a CNN to compute a C1 ] Yo
grid of features for an image t
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et, |,J = fatt( St- 1, h |'J ) €11 | €212 | €213 11 | 12 | A3
softmax
a s T S Oft m a X ( et’ e ) €21 | €322 | €323 | mmmmmp | y1 | Fp2p | 23 cat
Z|, Jat I,j €31 | €232 | €333 dy31 | 9232 | 233

1 v\ Y1
his | hia | hys \ ]

CNN hy1 | hop | a3

> Sp Sq
h3,1 h3,2 h3,3 \ ‘ ‘

Use a CNN to compute a C1 ] Yo G
grid of features for an image 1
[START]
O

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

Alignment scores Attention weights
et,i,j = fatt(st-ll h|,J) €11 | €212 | €213 11 | 12 | W3
softmax .
.. = softmax(et,:,:) T (PO PO i O O cat sitting
Z|, Jatl €31 | €32 | €333 do31 | 32 | dz33

' '\ Y1 Y2

his | hia | hys \ l ‘

CNN hy1 | hop | a3

> So Sq S,
h3,1 h3,2 h3,3 \ ‘ ‘ ‘ ‘
Use a CNN to compute a

grid of features for an image 1

[START] cat

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

Each timestep of decoder

et'i'j = faue(Sta, hij) uses a different context N |
dt,:,: = SOftmax(et,:,:) vector that looks at different cat sitting . outside ISTOP]
Z id arts of the input image
ELL P P 8 Y1 Y2 Y3 Ya
hl 1 hl 2 h1 3 ] ‘ ‘ ‘
CNN h2,1 hz,z h2,3 > Sp S m> S5 —m> S35 —/ §4
hs1 | h3y | D33 \ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Use a CNN to compute a C1 ] Yo G|y G| Y2 Ca |l Y3
grid of features for an image t 1 1 '
[START] cat sitting outside

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



Image Captioning with RNNs and Attention

bird flying over body

water

e[l B

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015




Image Captioning with RNNs and Attention

A stop sign is on a road with a
mountain in the background.

e S| " 7 6 - y
A group of people sitting on a boat A giraffe standing in a forest with
in the water. trees in the background.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015



X, Attend, and Y

“Show, attend, and tell” (Xu et al, ICML 2015)
Look at image, attend to image regions, produce question

“Ask, attend, and answer” (Xu and Saenko, ECCV 2016)
“Show, ask, attend, and answer” (Kazemi and Elqursh, 2017)
Read text of question, attend to image regions, produce answer

“Listen, attend, and spell” (Chan et al, ICASSP 2016)
Process raw audio, attend to audio regions while producing text

“Listen, attend, and walk” (Mei et al, AAAIl 2016)
Process text, attend to text regions, output navigation commands

“Show, attend, and interact” (Qureshi et al, ICRA 2017)
Process image, attend to image regions, output robot control commands

“Show, attend, and read” (Li et al, AAAI 2019)
Process image, attend to image regions, output text



Attention Layer

Inputs:
Query vector: q (Shape: D)

Input vectors: X (Shape: Ny x Dy)
Similarity function: f_;

Computation:

Similarities: e (Shape: Ny) e;="f.«(q, X))
Attention weights: a = softmax(e) (Shape: Ny)
Output vector:y = >.aX; (Shape: Dy)

€ij~ att(St-1, hi,j)

a, .. = softmax(e; . .)

Ce= 24, jNij

CNN

Alignment scores

Attention weights

€221 | €222 | €223 | b seagull
€31 | €23 | €33 ax31 | A232 | @233
Y1
1 \
hia | hia | hys \ |
h2,1 hz,z hz,a So S;
hs1 | hss | hss \ ] ]
1 C1 || Yo C
t
[START]

O




Attention Layer

Inputs:
Query vector: q (Shape: D)

Input vectors: X (Shape: Ny x D)
Similarity function:(dot product

Computation:

Similarities: e (Shape: Ny) |ei=q - X;
Attention weights: a = softmax(e) (Shape: Ny)
Output vector:y = >.aX; (Shape: Dy)

€ij~ att(St-1, hi,j)

a, .. = softmax(e; . .)

Ce= 24, jNij

CNN

Alignment scores Attention weights
€11 €12 €
softmax seaguII
€1 | € e —
€31 | €32 €333 31 | @32 @33
Y1
1 \
hia [hip [ his \ |
ho1 [ oo | hys So S1
hs1 | hsp | has \ ] ]
1 C || Yo C
[START] ‘

O

Changes:
Use dot product for similarity




/ \tt e n t i O n I_a e r Alignment scores Attention weights
y a1 | 412 | @13

€ij = farr(St-1, hij) s | a1z | eans
ap.. = softmax(ey..) ew ew e oo an o o seagull
Inputs: Ce= 234N, 1 \ .
Query vector: q (Shape: D) o o T \ |
Input vectors: X (Shape: Ny x D)
Similarity function:|scaled dot product NN (Mg | Rz | Das % 51
hs: |hss | hss \ ] ]

[START]

1 C || Yo C
1 ‘

O

Computation:
Similarities: e (Shape: Ny) e =q- Xi|/ sqrt(Dq) Changes:
Attention weights: a = softmax(e) (Shape: Ny) - Use scaled dot product for similarity

Output vector:y = >.aX; (Shape: Dy)



Att t . I_ Alignment scores Attention weights
e n I O n a ye r et,i,j = att(st—ll hi,j) oo

€11 | €12 | €13

a t’ = = SOft m a X ( et' 5 ) €21 | €22 €323 SOﬁ:ﬂ: 21 | @22 @23 seagu “
Ct = Z| at | H hl H €231 | €32 | €33 31 | @32 | @33
Inputs: AZBLE Y1
1 '\

Query vector: q (Shape: D)

h1,1 h1,2 h1,3
Input vectors: X (Shape: Ny x Dq) \ |

T . ' CNN | | hyy |hy, | h
Similarity function:|scaled dot product \\./ 21 | M2z | a3 So 51

hs; | hsy | hss \ ] ]

Large similarities will cause softmax to

saturate and give vanishing gradients 1 ¢ llYol &
Recalla-b=]a||b]| cos(angle) t

Suppose that a and b are constant vectors of [START] ‘
dimension D O

Then |a]| =(J;a2)¥/2=a sqrt(D)

Computation:

Similarities: e (Shape: Ny) e =q- Xi|/ sqrt(Dq) Changes:

Attention weights: a = softmax(e) (Shape: Ny) - Use scaled dot product for similarity

Output vector:y = >.aX; (Shape: Dy)



Attention Layer

Inputs: Ce= 24, jNij

Query vectors:|Q (Shape: Nq x Dg)
Input vectors: X (Shape: Ny x D)

Computation:

Similarities: E = OXT (Shape: Nq x Ny) E;; = Q; - X;/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AX (Shape: Nq x Dy) Y; = 2;A; iX;

€ij~ att(St-1, hi,j)
a, .. = softmax(e; . .)

CNN

Alignment scores

Attention weights

softmax

Use dot product for similarity
Multiple query vectors

€1 | €2 —_— seagull
31 | €232 | €233 Ax31 | @232 | @33 y
hi1 [hia | hys \ |
hy1 | hyy | hys So 3
hs1 | hss | hss \ ] ]
1 C1 || Yo C
t
[START]
)\
|,
Changes:




Attention Layer

Inputs: Ce= 24, jNij

Query vectors: O (Shape: Ng x Dg)
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: (. = X\W, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Nq x Ny) E;; = Q; - K/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Y; = 2;A;;V;

€ij~ att(St-1, hi,j)
a, .. = softmax(e; . .)

CNN

Alignment scores

Attention weights

seagull

Y1

\ |

|

So S1
C1

Yo

C

t

[START]

Changes:

O

- Use dot product for similarity
- Multiple query vectors
- Separate key and value




Attention Layer

Inputs:
Query vectors: O (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: [{ = X (Shape: Ny x Dq)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ngq x Ny) E;; = Q; - I,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Y; = 2;A;;V;

Q

Q

Qs



Attention Layer

Inputs:
Query vectors: O (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: [{ = X (Shape: Ny x Dq)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ngq x Ny) E;; = Q; - I,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Y; = 2;A;;V;

Q

Q

Qs



Attention Layer

Inputs:
Query vectors: O (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: [{ = X (Shape: Ny x Dq)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ngq x Ny) E;; = Q; - I,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Y; = 2;A;;V;

X1 1 Ky — Ei1

X, — Ky — Ei>

X3 ™ K3 — Eq3

Q



Attention Layer

Inputs:
Query vectors: O (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: [{ = X (Shape: Ny x Dq)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ngq x Ny) E;; = Q; - I,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Y; = 2;A;;V;

Kl ELl

KZ ELZ

K3 EL3

Q



Attention Layer

Inputs:
Query vectors: O (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: [{ = X (Shape: Ny x Dq)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ngq x Ny) E;; = Q; - I,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Y; = 2;A;;V;




Attention Layer

Inputs:
Query vectors: O (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: [{ = X (Shape: Ny x Dq)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ngq x Ny) E;; = Q; - I,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Y; = 2;A;;V;

Y1

Y, Y, Y,

I I | I
Product( 1 ), Sum(t)
t
Vy A1 Az Az As
Vs, A1 Ay, Az, Asp
V3 A1z A3 Az Assz
Softmax( t )

X1 K1 Eqiq Esq Es1 Es1
X5 K, Eqi, E,» Es» Esp
X3 Ks Eqs E;s Ess Ess

[ I f I
Q Q, Qs Q,




Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dq)
Value Vectors: V = XW,, (Shape: Ny x Dy)
Similarities: E = (Shape: Ny x Ny) E;; =

/ sart(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3;A; )V,




Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dq)
Value Vectors: V = XW,, (Shape: Ny x Dy)
Similarities: E = (Shape: Ny x Ny) E;; =

/ sart(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3;A; )V,

Q
t

Q, |Q
1 f
X, X




Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dq)
Value Vectors: V = XW,, (Shape: Ny x Dy)
Similarities: E = (Shape: Ny x Ny) E;; =

/ sart(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3;A; )V,

Ks
Ky
Ky
Q
t
X1

Q, |Q
1 f
X, X




Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dq)
Value Vectors: V = XW,, (Shape: Ny x Dy)
Similarities: E = (Shape: Ny x Ny) E;; =

/ sart(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3;A; )V,

E;s Ess
EZ,Z E3,2
EZ,l E3,1
1 t
Q, |Q
1 f
X, X




Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dq)
Value Vectors: V = XW,, (Shape: Ny x Dy)
Similarities: E = (Shape: Ny x Ny) E;; =

/ sart(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3;A; )V,

A3 A Az
A1, A, A,
Ai1 A4 As 4

t

| Softmax(1")

1
Ks — | Ei3 E; 3 Es s
K, — | Ei E,» Es
K1 g E1,1 E2,1 E3,1
t t t
Q Q, Q;
t t t
X1 X5 X3




Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XWg,

Key vectors: [{ = X (Shape: Ny x Dq)
Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; -

/ sart(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3;A,V;

= As A3 As; 3
— A, A;> As»
— A A1 As;
t
| Softmax(1")
)
- E1,3 E2,3 E3,3
- E1,2 Ez,z E3,2
- E1,1 E2,1 E3,1
t 1 t
Q, Q, Qs
t ) t
X1 X, X3




Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XWg,

Key vectors: [{ = X (Shape: Ny x Dq)
Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; -

/ sart(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3;A,V;

Yy Y, Y3
4 4 t
Product(1), Sum(1)
t
— A A, As 3
— A A;> As >
— A A1 As1
1
| Softmax(1")
t
nd E1,3 E2,3 E3,3
- E1,2 Ez,z E3,2
- E1,1 E2,1 E3,1
t 1 t
Q, Q, Q,
t 1 t
X1 X, X3




Self-Attention Layer

Consider permuting
the input vectors:

Inputs:

Input vectors: X (Shape: Ny x Dy)
Key matrix: \W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dq)

Computation:

Query vectors: O = X\W,

Key vectors: [{ = XW, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q; - K/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3;A;,V,

t 1 t

Product(1), Sum(1)

t

t

Softmax(1T)

t




Self-Attention Layer

Consider permuting
the input vectors:

Inputs:
Input vectors: X (Shape: Ny x Dy) Queries and Keys will be
Key matrix: W, (Shape: Dy x Dg) the same, but permuted

Value matrix: W, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dq)

Computation:

Query vectors: O = X\W,

Key vectors: (= X\W, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV,

t 1 t

Product(1), Sum(1)

t

t

Softmax(1T)

t




Self-Attention Layer

Consider permuting
the input vectors:

Inputs:
Input vectors: X (Shape: Ny x Dy) Similarities will be the
Key matrix: W, (Shape: Dy x Dg) same, but permuted

Value matrix: W, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dq)

Computation:

Query vectors: O = X\W,

Key vectors: (= X\W, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV,

t 1 t

Product(1), Sum(1)

t

t

Softmax(1T)

Q @ &
t t t




Self-Attention Layer

Consider permuting
the input vectors:

Inputs:
Input vectors: X (Shape: Ny x Dy) Attention weights will be
Key matrix: W, (Shape: Dy x Dg) the same, but permuted

Value matrix: W, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dq)

Computation:

Query vectors: O = X\W,

Key vectors: (= X\W, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV,

t 1 t

Product(1), Sum(1)

A3,3 A1,3 A2,3

T

Softmax(1T)

Q @ &
t t t




Self-Attention Layer

Consider permuting
the input vectors:

Inputs:
Input vectors: X (Shape: Ny x D) Values will be the
Key matrix: W, (Shape: Dy x Dg) same, but permuted

Value matrix: W, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dq)

Computation:

Query vectors: O = X\W,

Key vectors: (= X\W, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV,

t 1 t

Product(1), Sum(1)

Q @ &
t t t




Self-Attention Layer

Consider permuting
the input vectors:

Inputs:

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dq)

Outputs will be the
same, but permuted

Computation:

Query vectors: O = X\W,

Key vectors: (= X\W, (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV,

Y3 Yy Y,
t t t
Product(1), Sum(1)

t
A3,2 A1,2 A2,2
A3,1 A1,1 A2,1
A3,3 A1,3 A2,3
t
Softmax(1T)

t
Es» E1, E,»
E3,1 El,l E2,1
E3,3 E1,3 E2,3
t t t
Q; Q Q,
t t t
X3 X1 X3




Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dq)

Computation:

Query vectors: O = X\W,

Key vectors: (= X\W, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x Dy)

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation Equivariant

f(s(x)) = s(f(x))

Self-Attention layer works
on sets of vectors

Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3;A;V;

Y3 Yy Y,
t t t
Product(1), Sum(1)

t
A3,2 A1,2 A2,2
A3,1 A1,1 A2,1
A3,3 A1,3 A2,3
t
Softmax(1T)

t
E3,2 E1,2 E2,2
E3,1 El,l E2,1
E3,3 E1,3 E2,3
t t t
Q; Q Q,
t t t
X3 X1 X3




Self-Attention Layer

Self attention doesn’t Vv

“know” the order of the =
Inputs: vectors it is processing V,
Input vectors: X (Shape: Ny x Dy) Y
Key matrix: W, (Shape: Dy x Dg) In order to make ;

processing position-
aware, concatenate input
with positional encoding

Value matrix: W, (Shape: Dy x Dy)
Query matrix: (Shape: Dy x Dq)

Computation: E can be learned lookup
Query vectors: O =X table, or fixed function
Key vectors: [{ = X (Shape: Ny x Dq)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV,

Y, Y, Y;
t 4 t
Product(1), Sum(1)
t
— As A3 As; 3
— A, A;» As»
— [ Aq A1 As;
t
| Softmax(1")
)
- E1,3 E2,3 E3,3
Ez,z E3,2
E2,1 E3,1
t t
Q, Qs
) t
X5 X3
E(2) E(3)




Vasked Self-Attention Layer

Don’t let vectors “look ahead” in the sequence

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dq)
Value matrix: W, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dq)

Computation:

Query vectors: O = X\W,

Key vectors: [{ = X (Shape: Ny x Dq)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV,

t t t
Product(1), Sum(1)
t
0 0 | | As;

0 A2,2 A3,2
Al, 1 A2, 1 A3, 1

t
Softmax(1T)
t
-0 =00 E3 3
-9 E,> Es>
El 1 E2,1 E3 1
t t t
Q Q, Qs
t ) t




Multihead Self-Attention Layer

Use H independent
“Attention Heads” in parallel

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W, (Shape: D, x D)

, Hyperparameters:
Query matrix: (Shape: Dy x Dg)

Query dimension D,

Computation: Number of heads H
Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dq)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ny x Ny) E;; = / sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV,

Y1 Y, Y3 Y: Y, Y3 Yy Y, Y3

Product(=), Sum(1) Product(=), Sum(1) Product(=>), Sum(T)
Vs Az | Ay Ay Vs Az | (A Ay Vs A | (A | (A
Va A | (A (A2 V2 A | [Az] [P v, A | (A, | (A
_’ Aua Ao A _’ Ay Ay Asa Vi |- Aiy A Asa
K |[En | [Bs | [Es 6 |~[[Ea | [E=] [B» & |~ [E&] &
K |—| E, B Es, K |— | Ep B Es, K || Bz 253 Es,
Ki =B | (B | [En Ki (=B [En | By Ki [=/[En | (B | [En

1 t t t t t t t t

Q Q Qs Q Q, Q; Q Q Q

t t t t t t t t t
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Example: CNN with Self-Attention

Input Image
N

CNN

Features:
CxHxW

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018



Example: CNN with Self-Attention

Queries:
C'xHxW

Input Image 1x1 Conv

Keys:
CNN | CxHxW

1x1 Conv

Features:
CxHxW

Values:
C’'xHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018



Example: CNN with Self-Attention

Queries: Attention Weights
C’x H xW Transpose (H x W) x (H x W)

Input Image 1x1 Conv

N v v

.= ? i 4

Aot Wi '«\»
» g

softmax

Keys:
CNN | CxHxW

1x1 Conv

Features:
CxHxW

Values:
C’'xHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018



Example: CNN with Self-Attention

Queries: Attention Weights
C’xHxW Transpose (H x W) x (H x W)
Input Image 1x1 Conv s
N Keys:
CNN — | C'xHxW

1x1 Conv

Features:

CxHxW C'xHxW
Values: |
C’'xHxW :®
1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018



Example: CNN with Self-Attention

Queries: Attention Weights
C’x H xW Transpose (H x W) x (H x W)

1x1 C
Input Image X1 Lonv softmax

CxHxW
Keys:

CNN — | C’'xHxW
1x1 Conv

Features:
CxHxW C’xHxW

Values:

C’'xHxW /X\
\Z/

1x1 Conv

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018



Example: CNN with Self-Attention

Residual Connection

Attention Weights

ueries:
. Transpose (H x W) x (H x W)

C’xHxW

Input Image 1x1 Conv

v

softmax

Keys:

1x1 Conv -

Features:
CxHxW C’'xHxW

Values:
C'xHxW ‘/X\ .

1x1 Conv

1x1 Conv

v
C

Self-Attention Module

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018

CNN — C'xHxW —»@—



Three Ways of Processing Sequences

Recurrent Neural Network

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, ht ”sees” the whole
sequence

(-) Not parallelizable: need to
compute hidden states sequentially



Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution
Yi— Y2 /™ Y3 /™ VY4 Y1 Y2 Y3 Ya
X1 X X3 X4 X1 X X3 X4
Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: After (-) Bad at long sequences: Need to
one RNN layer, hr ”sees” the whole stack many conv layers for outputs
sequence to “see” the whole sequence
(-) Not parallelizable: need to (+) Highly parallel: Each output can

compute hidden states sequentially be computed in parallel



Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution Self-Attention
Yi ™ Yo /" Y3 /™ Y4 Y1 Y2 Y3 Ya N e

Works on Ordered Sequences Works on Multidimensional Grids Works on Sets of Vectors

(+) Good at long sequences: After (-) Bad at long sequences: Need to (-) Good at long sequences: after one
one RNN layer, ht ”sees” the whole stack many conv layers for outputs self-attention layer, each output
sequence to “see” the whole sequence “sees” all inputs

(-) Not parallelizable: need to (+) Highly parallel: Each output can (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel be computed in parallel

(-) Very memory intensive



Three Ways of Processing Sequences

Recurrent Neural Network

1D Convolution

Self-Attention

Attention is all you need

Vaswani et al, NeurlPS 2017

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, ht ”sees” the whole
sequence

(-) Not parallelizable: need to
compute hidden states sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need to
stack many conv layers for outputs
to “see” the whole sequence

(+) Highly parallel: Each output can
be computed in parallel

Works on Sets of Vectors

(-) Good at long sequences: after one
self-attention layer, each output
“sees” all inputs

(+) Highly parallel: Each output can
be computed in parallel

(-) Very memory intensive



The Transformer

Vaswani et al, “Attention is all you need”, NeurlIPS 2017




The Transformer

Vaswani et al, “Attention is all you need”, NeurlIPS 2017

All vectors interact
with each other

T
Self-Attention
t t
] ]
X, X3




The Transformer

Vaswani et al, “Attention is all you need”, NeurlIPS 2017

Residual connection
All vectors interact
with each other

Self-Attention
t t
I |
X, X3

P




The Transformer

Recall Layer Normalization:
Given hy, ..., hy ~ (Shape: D)

scale: y (Shape: D)
shift: 5 (Shape: D)
t=(1/D)3; h;; (scalar)
o= (3 (h;;- w)2)v2 (scalar) Layer Normalization
zi=(h; - M),/Bai Residual connection gl)
Yi=y*zi+ '

All vectors interact Self-Attention

with each other 1 1 f

I I |

Ba et al, 2016

X1 X3 X3

Vaswani et al, “Attention is all you need”, NeurlIPS 2017




The Transformer

Recall Layer Normalization:
Given hy, ..., hy ~ (Shape: D)
scale: y (Shape: D)
shift: 5 (Shape: D)
t=(1/D)3; h;; (scalar)

0= (3 (hi;- 1)?)¥2 (scalar)

zi=(hi- )/ o

Vi=Y*zi+p

Ba et al, 2016

Vaswani et al, “Attention is all you need”, NeurlIPS 2017

MLP independently
on each vector

Residual connection
All vectors interact
with each other

|
I I I I
MLP MLP MLP MLP
t t | t |
Layer Normalization
¢
Self-Attention
t t t t
I I I I
X1 X2 X3 Xa




The Transformer

Recall Layer Normalization:

Given hy, ..., hy ~ (Shape: D)
scale: y (Shape: D)
shift: 5 (Shape: D)
t=(1/D)3; h;; (scalar)

0= (3 (hi;- 1)?)¥2 (scalar)

zi=(hi- )/ o

Vi=Y*zi+p

Ba et al, 2016

Vaswani et al, “Attention is all you need”, NeurlIPS 2017

Residual connection

MLP independently
on each vector

Residual connection
All vectors interact
with each other

P

MLP MLP MLP MLP
t t t |
Layer Normalization
4
Self-Attention
t t t t
I I I I
X1 X2 X3 Xa




The Transformer vl vl vl v
t 1 1 1

Layer Normalization

Recall Layer Normalization: _

Givenhy, .., hy (Shape: D) Residual connection =91)

scale: y (Shape:D)  MLP independently MILP MILP MILP MILP
shift: g (Shape: D)  on each vector 1 1 1 1
t=(1/D)3; h;; (scalar)

0i= (3 (hi; - w)?)¥2 (scalar) Layer Normalization
zi=(hi-w)/ o Residual connection gl)
Vi=y*zi+p All vectors interact

. Self-Attention
with each other $ $ $ $

| I | |

X1 X5 X3 Xy

Ba et al, 2016

Vaswani et al, “Attention is all you need”, NeurlIPS 2017



The Transformer

Y1 Y2 Y3 Ya
| ! I I
Transformer Block: Layer Normalization
Input: Set of vectors x :91)
Output: Set of vectors y

MLP MLP MLP MLP

Self-attention is the only t t t t
interaction between vectors

Layer Normalization

Layer norm and MLP work :%1)
independently per vector

Self-Attention
t t t t
Highly scalable, highly o 1 1 t

parallelizable
X1 X2 X3 Xa

Vaswani et al, “Attention is all you need”, NeurlIPS 2017



The Transformer

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Vaswani et al, “Attention is all you need”, NeurlIPS 2017

A Transformer is a sequence
of transformer blocks

Vaswani et al:
12 blocks, Dq=512, 6 heads

1 t 1 1

Layer Normalization

|MW|‘MW| Mm\|Mb
t t i f

Layer Normalization

Self-Attention
t t t f
! ! ! 1
l ! I 1
Layer Normalization

|Mw||Mw| Mw\|Mw'

Layer Normalization

Self-Attention
Lt t t t
! ! ! !
1 ! | 1
Layer Normalization
|hALP | | hALP | hALP L
. J
Layer Normalization
Self-Attention
t t t t

! ! ! 1



The Transformer: Transfer Learning

“ImageNet Moment for Natural Language Processing”

Pretraining:
Download a lot of text from the internet

Train a giant Transformer model for language modeling

Finetuning:
Fine-tune the Transformer on your own NLP task

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018

1 t 1 1

Layer Normalization

|MLP| ‘MLP| MLP‘ |MILP
t t i f

Layer Normalization

—

Self-Attentio
t t i f

! ! f !
1 ! ! 1

Layer Normalization

—

|Mw||Mw| MW‘|MW:

Layer Normalization

—

Self-Attention

t t f t
f ! f |
I ! ! 1

Layer Normalization

—

|MLP| \MLP| MLP‘ |MLP
- |

Layer Normalization

—

Self-Attentio

f t 5 t
! ! ! 1



Scaling up Transformers
L S S ™ S 7 S N 2 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)

Vaswani et al, “Attention is all you need”, NeurIPS 2017



Scaling up Transformers
L S S ™ S 7 S N 2 S

Transformer-Base 8x P100 (12 hours)

Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB
BERT-Large 24 1024 16 340M 13 GB

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018



Scaling up Transformers
L S S ™ S 7 S N 2 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)

Yang et al, XLNet: Generalized Autoregressive Pretraining for Language Understanding", 2019
Liu et al, "RoBERTa: A Robustly Optimized BERT Pretraining Approach", 2019



Scaling up Transformers
L S S ™ S 7 S N 2 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)
GPT-2 12 768 12 117M 40 GB

GPT-2 24 1024 16 345M 40 GB

GPT-2 36 1280 20 762M 40 GB

GPT-2 48 1600 25 1.5B 40 GB

Radford et al, "Language models are unsupervised multitask learners", 2019



Scaling up Transformers
L S S ™ S 7 S N 2 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)
GPT-2 12 768 12 117M 40 GB

GPT-2 24 1024 16 345M 40 GB

GPT-2 36 1280 20 762M 40 GB

GPT-2 48 1600 25 1.5B 40 GB

Megatron-LM 40 1536 16 1.2B 174 GB 64x V100 GPU
Megatron-LM 54 1920 20 2.5B 174 GB 128x V100 GPU
Megatron-LM 64 2304 24 4.2B 174 GB 256x V100 GPU (10 days)
Megatron-LM 72 3072 32 8.3B 174 GB 512x V100 GPU (9 days)

Shoeybi et al, "Megatron-LM: Training Multi-Billion Parameter Languge Models using Model Parallelism", 2019



Scaling up Transformers

Transformer-Base
Transformer-Large
BERT-Base
BERT-Large
XLNet-Large
RoBERTa

GPT-2

GPT-2

GPT-2

GPT-2
Megatron-LM
Megatron-LM
Megatron-LM
Megatron-LM

12
12
24
24
24
12
24
36
48
40
54
64
72

1024
768

1024
1024
1024
768

1024
1280
1600
1536
1920
2304
3072

16
12
16
16
16
12
16
20
25
16
20
24
32

~S430,000 on Amazon AWS
m—mmmm

213M
110M
340M
~340M
355M
117M
345M
762M
1.5B
1.2B
2.5B
4.2B
8.3B

13 GB
13 GB
126 GB
160 GB
40 GB
40 GB
40 GB
40 GB
174 GB
174 GB
174 GB
174 GB

8x P100 (12 hours)
8x P100 (3.5 days)

512x TPU-v3 (2.5 days)
1024x V100 GPU (1 day)

64x V100 GPU
128x V100 GPU
256x V100 GPU (10 days)

512x V100 GPU (9 days)




Scaling up Transformers
L S S ™ S 7 S N 2 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)
GPT-2 12 768 12 117M 40 GB

GPT-2 24 1024 16 345M 40 GB

GPT-2 36 1280 20 762M 40 GB

GPT-2 48 1600 25 1.5B 40 GB

Megatron-LM 40 1536 16 1.2B 174 GB 64x V100 GPU
Megatron-LM 54 1920 20 2.5B 174 GB 128x V100 GPU
Megatron-LM 64 2304 24 4.2B 174 GB 256x V100 GPU (10 days)
Megatron-LM 72 3072 32 8.3B 174 GB 512x V100 GPU (9 days)

GPT-3 96 12288 96 175B 570 GB 256xV100 (3 months)



Scaling up Transformers
L S S ™ S 7 S N 2 S

Transformer-Base
Transformer-Large
BERT-Base
BERT-Large
XLNet-Large
RoBERTa

GPT-2

GPT-2

GPT-2

GPT-2
Megatron-LM
Megatron-LM
Megatron-LM
Megatron-LM
GPT-3

Megatron-Turing NLG 105

12
12
24
24
24
12
24
36
48
40
54
64
72
96

1024
768
1024
1024
1024
768
1024
1280
1600
1536
1920
2304
3072
12288
20480

16
12
16
16
16
12
16
20
25
16
20
24
32
96
128

213M
110M
340M
~340M
355M
117M
345M
762M
1.5B
1.2B
2.5B
4.2B
8.3B
175B
530B

13 GB
13 GB
126 GB
160 GB
40 GB
40 GB
40 GB
40 GB
174 GB
174 GB
174 GB
174 GB
570 GB

>1TB

8x P100 (12 hours)
8x P100 (3.5 days)

512x TPU-v3 (2.5 days)
1024x V100 GPU (1 day)

64x V100 GPU

128x V100 GPU

256x V100 GPU (10 days)
512x V100 GPU (9 days)

256xV100 (3 months)
280xA100 (6 months)



Summary

Generalized Self-Attention
is a powerful neural

network primitive
Adding Attention to RNN

Y1 Y, Y3

models lets them look at e
. [ Product(->), Sum(?) |
different parts of the t
. . Va |= A Ay Ass
input at each timestep Va |~ (A, | (A | [As ]
Ve = (A (A | A
| Softmax(1") |
[
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A dog is standing on a hardwood floor. X1 X X3
= ] |

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Transformers are a
neural network model
that only uses attention
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Layer Normalization
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Scaling up Transformers
L S S ™ S 7 S N 2 S

Transformer-Base
Transformer-Large
BERT-Base
BERT-Large
XLNet-Large
RoBERTa

GPT-2

GPT-2

GPT-2

GPT-2
Megatron-LM
Megatron-LM
Megatron-LM
Megatron-LM
GPT-3

GPT-4 (?)

12
12
24
24
24
12
24
36
48
40
54
64
72
96
150

1024
768
1024
1024
1024
768
1024
1280
1600
1536
1920
2304
3072
12288
20480

16
12
16
16
16
12
16
20
25
16
20
24
32
96
160

213M
110M
340M
~340M
355M
117M
345M
762M
1.5B
1.2B
2.5B
4.2B
8.3B
175B
5008

13 GB
13 GB
126 GB
160 GB
40 GB
40 GB
40 GB
40 GB
174 GB
174 GB
174 GB
174 GB
570 GB

5TB

8x P100 (12 hours)
8x P100 (3.5 days)

512x TPU-v3 (2.5 days)
1024x V100 GPU (1 day)

64x V100 GPU
128x V100 GPU

256x V100 GPU (10 days)
512x V100 GPU (9 days)

256xV100 (3 months)
1024xA100 (6 months)
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