
GRK 12  
Dr Wojciech Palubicki 



Where we were at… 

State Update Broad Phase Narrow Phase 
Collision 

Response 



Today… 

State Update Broad Phase Narrow Phase 
Collision 

Response 



Basic Idea 

• Limit motion of particles/ rigid bodies by introducing constraints. 



Constraint Types 

• Contact and Friction 



Constraint Types 

• Distance: Cloth 



Constraint Types 

• Joint angle and distance constraints of ragdolls 



Collision Response 

• Solving physical constraints in addition to the equations of motion 

• Constraints are mostly contact constraints, but also 
• Friction constraints 

• Distance constraints 

• Joint angle constraints 

• ... 

• The ideal collision response system deals with all of these 





Contact constraint 
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Naive Take 

• Apply the constraints to the objects in pairs 

• Use the laws of conservation of motion for each collision; P0 is the point of 
collision, xA and xB are the centers of mass of the objects, v- is the pre-
impact velocity of the objects, v+ is the post-impact velocity of the objects 
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• 𝑟𝐴 =  𝑃0 −  𝑥𝐴, 𝑟𝐵 =  𝑃0 –  𝑥𝐵 

• 𝑣𝐴
+  = 𝑣𝐴

− +  𝑓𝑁0/𝑚𝐴 

• 𝜔𝐴
+  = 𝜔𝐴

− + + 𝐼𝐴
− (𝑟𝐴 ×  (𝑓𝑁0)) 

• Push away from interpenetration as long as interpenetration exists 



Naive Take 

• Jitters a lot, and does not support stacking 

• May be acceptable in very sparse scenarios (space/flight simulator) 



Naive Take 2 

• Apply the constraints to the objects in pairs 

• Apply again during the same integration step 

• Average/combine the various impulses 

• Push apart objects so they do not penetrate 

• Constraints are still broken 

• Slow 



Unconstrained Kinematics 

• A rigid body is characterized by 

• 𝑥  =  𝑣 

• 𝑞 =  
1

2
𝜔𝑞 



Unconstrained Kinematics 

• For a system of N bodies, we can define the system derivative as 

 

 

𝑋 = 𝑉 =

𝑣1
𝜔1
⋮
𝑣𝑛
𝜔𝑛

 



Constraints 

Position x 
𝐶 𝑥 =  𝑥 − 𝑑 = 0 



Constraints 

Position x 
𝐶 𝑥 =  𝑥 − 𝑑 = 0 



Constraints 

Position x 
𝐶 𝑥 =  𝑥 − 𝑑 = 0 

Legal positions 



Constraints 

• Our system allows pairwise constraints between bodies 

• The k-th constraint, between bodies i and j , has the form 

 
𝐶𝑘 (𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗)  =  0 

 



Constraints 

• The vector C holds all the constraints. 𝐶 =  0, or 𝐶(𝑋(𝑡))  =  0, is a 
function of the state vector, so by the chain rule  

 
𝐶 𝑋(𝑡) = 𝐶 𝑋 𝑋 (𝑡) = 𝐽𝑉 =  0 



Constraint forces 

• Each constraint causes a reaction force 𝑓𝑐 and a reaction torque τ𝑐 

• The vector of all reaction forces is 

 

 

𝐹𝑐 =

𝑓𝑐1
𝜏𝑐1

 

⋮
𝑓𝑐𝑛
𝜏𝑐𝑛

 



Constraint forces 

We know that 𝐶 =  𝐽𝑉 =  0 

• 𝐽𝑉 =
𝐽1 ∙ 𝑉
⋮

𝐽𝑚 ∙ 𝑉
= 0 

• This means that 𝑉 is orthogonal to each row of 𝐽 



Constraint forces 

We know that 𝐶 =  𝐽𝑉 =  0 

• 𝐽𝑉 =
𝐽1 ∙ 𝑉
⋮

𝐽𝑚 ∙ 𝑉
= 0 

• This means that 𝑉 is orthogonal to each row of 𝐽 



Constraint forces 

• Constraint forces perform no work, so 𝐹𝑐 ∙ 𝑉 =  0 



Contact Constraint 

velocity 
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velocity 

F 

adjusted 
velocity 

𝐹𝑐 ∙ 𝑉 =  0 



Distance Constraint 



Distance Constraint 



velocity 



velocity 

F1 

F2 



velocity 

F1 

F2 

blend forces: 
 𝐹1𝜆1 +  𝐹2𝜆2 



Constraint forces 

• We can use 𝐹𝑐 = 𝐽𝑇𝜆 for some vector 𝜆 of undetermined 
(Lagrangian) force multipliers 

 

 

𝐹𝑐 ∙  𝑉 =  𝐽𝑇𝜆 ∙ 𝑉 =   𝐽𝑖𝜆𝑖
𝑖

∙ 𝑉= 𝐽𝑖 ∙ 𝑉𝜆𝑖
𝑖

= 0 ∙ 𝜆𝑖
𝑖

= 0 



Constraint forces 

• We compute the matrix 𝐽 of constraints from the collision system 

• We then solve for 𝜆, compute 𝐹𝑐, and finally obtain 𝑉 



Distance constraints 

• The simplest constraint is a distance constraint 

• Two points of two bodies must remain at a given distance 

• 𝐶 (𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗)  =  
1

2
( 𝑥𝑗 − 𝑥𝑖

2 −  𝐿2)  =  0 

• If we derive this, we get (𝑑 = 𝑥𝑗 − 𝑥𝑖 ) 
𝐶 (𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗)  =  𝑑 ∙ (𝑣𝑗  +  𝜔𝑗  × 𝑟𝑗 − 𝑣𝑖 −𝜔𝑖 × 𝑟𝑖) 

• We split this into a row for 𝐽 and a part of 𝑉: 

𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = −𝑑𝑇 − 𝑟𝑖 × 𝑑 𝑇      𝑑𝑇
      

𝑟𝑗 × 𝑑 𝑇    𝑣𝑖𝜔𝑖𝑣𝑗𝜔𝑗
𝑇 

a row of J columns of V 



Distance constraints 

𝑥 1  

𝑥 2  

𝐶 𝑥1, 𝑞1, 𝑥2, 𝑞2 =  𝑑 ∙ 𝑣1  − 𝑣2  

𝑑 

𝑣1 

𝑣2 



Distance constraints 

𝑥 1  

𝑥 2  

𝑑 

𝑣1 

𝑣2 

𝐶 𝑥1, 𝑞1, 𝑥2, 𝑞2 =  𝑑 ∙ 𝑣1 − 𝑣2 − 𝜔2 × 𝑟2  

𝑟2 



Distance constraints 

• Note that a row of J also contains many zeroes (6 ×  (𝑁𝑏𝑜𝑑𝑖𝑒𝑠 −  2)) 

• The only columns that are not zeroed are those corresponding to the 
bodies i and j 

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = ⋯0 − 𝑑𝑇 − 𝑟𝑖 × 𝑑 𝑇 0 ⋯ 0 𝑑𝑇 𝑟𝑗 × 𝑑 𝑇⋯0 𝑉 

a row of J 



Contact constraints 

𝑥 1  

𝑛1 

𝑟2 

𝑟1 



Contact constraints 

• The contact constraint measures the object separation; it is negative 
in case of overlap 

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = (𝑥𝑗 +  𝑟𝑗 − 𝑥𝑖 −  𝑟𝑖 )  ∙  𝑛𝑖 =  0 

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = 
(𝑣𝑗 +  𝜔𝑗 ×  𝑟𝑗 − 𝑣𝑖 −𝜔𝑖 ×  𝑟𝑖 ) ∙ 𝑛𝑖 +  (𝑥𝑗 +  𝑟𝑗 − 𝑥𝑖 − 𝑟𝑖 ) ∙ 𝜔𝑖 × 𝑛𝑖  

We assume that both penetration and angular velocity are small, so we 
ignore the second term 

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 ≈ (𝑣𝑗 +  𝜔𝑗 ×  𝑟𝑗 −  𝑣𝑖 − 𝜔𝑖 ×  𝑟𝑖)  ∙ 𝑛𝑖  



Contact constraints 

• We can now separate 𝐶  into 𝐽 and 𝑉: 

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = 𝑣𝑗 +  𝜔𝑗 ×  𝑟𝑗 − 𝑣𝑖 − 𝜔𝑖 ×  𝑟𝑖 ∙ 𝑛𝑖 = 

−𝑛𝑖
𝑇 − 𝑟𝑖 × 𝑛𝑖

𝑇 𝑛𝑖
𝑇 𝑟𝑗 × 𝑛𝑖

𝑇  𝑣𝑖 𝜔𝑖 
𝑣𝑗 𝜔𝑗

𝑇 



Contact constraints 

• Notice that the force between bodies in contact can push them apart, 
but not pull them together 

• This means that 0 ≤ 𝜆𝑘 ≤  +∞, where 𝑘 is the constraint index for a 
contact constraint 



Contact constraints 

• Due to numerical errors or issues with discrete steps penetration 
might happen anyway 

• We allow the velocity to be modulated by a pushing factor which is 
proportional to the penetration 

• This means that for contact constraints 𝐽𝑖𝑉 =  − 𝛽𝐶𝑖 , for 𝛽 ≤
1

∆𝑡
 



Friction constraints 

• Friction constraints are very similar to contact constraints 

• Friction happens along the tangent plane, so we have two constraints 
(one for ui = T and one for uj = B) 

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = 𝑣𝑗 +  𝜔𝑗 ×  𝑟𝑗 − 𝑣𝑖 − 𝜔𝑖 ×  𝑟𝑖 ∙ 𝑢𝑖 = 

−𝑢𝑖
𝑇   − 𝑟𝑖 × 𝑢𝑖

𝑇    𝑢𝑖
𝑇     𝑟𝑗 × 𝑢𝑖

𝑇  𝑣𝑖 𝜔𝑖 
𝑣𝑗 𝜔𝑗

𝑇 

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = 𝑣𝑗 +  𝜔𝑗 ×  𝑟𝑗 − 𝑣𝑖 − 𝜔𝑖 ×  𝑟𝑖 ∙ 𝑢𝑗 = 

−𝑢𝑗
𝑇   − 𝑟𝑖 × 𝑢𝑗

𝑇     𝑢𝑗
𝑇     𝑟𝑗 × 𝑢𝑗

𝑇  𝑣𝑖 𝜔𝑖 
𝑣𝑗 𝜔𝑗

𝑇 

 

 

 

 



Friction constraints 

• We must also bound the friction value (this is an approximation) to 
take the friction coefficient into account 

• −𝜇𝑚𝑐𝑔 ≤ 𝜆𝑢1 ≤   𝜇𝑚𝑐𝑔 and  −𝜇𝑚𝑐𝑔 ≤ 𝜆𝑢2  ≤ 𝜇𝑚𝑐𝑔, where 𝑚𝑐 is 
the mass assigned to the contact point 



Equations of motion 

• We now integrate our constraint system with the equations of motion 

• We know the Newton - Euler equations of motion are 

• 𝑚𝑣  = 𝐹 = 𝑓𝑐 + 𝑓𝑒𝑥𝑡 

• 𝐼𝜔  = 𝜏 = 𝜏𝑐 + 𝜏𝑒𝑥𝑡 



Equations of motion 

• We can define a single matrix for all the bodies 

 

𝑀 =

𝑚1𝐸3𝑥3
0
⋮
0
0

0
𝐼1
⋮
⋯
⋯

⋯
⋯  
⋱
0
0

0
0
⋮

𝑚𝑛𝐸3𝑥3
0

0
0
⋮
0
𝐼𝑛

 

 

• 𝐸3𝑥3 is the identity matrix 



Equations of motion 

• We can easily invert this matrix 

 

𝑀−1  =

(𝑚1𝐸3𝑥3)
−1

0
⋮
0
0

0
𝐼1
−1

⋮
⋯
⋯

⋯
⋯  
⋱
0
0

0
0
⋮

(𝑚𝑛𝐸3𝑥3)
−1

0

0
0
⋮
0

𝐼𝑛
−1

 



Equations of motion 

• We define a single vector for all the external forces 

• 𝐹𝑒𝑥𝑡 =

𝑓𝑒𝑥𝑡1
𝜏𝑒𝑥𝑡1

 

⋮
𝑓𝑒𝑥𝑡𝑛
𝜏𝑒𝑥𝑡𝑛

 



Equations of motion 

• Since we know that 𝐹𝐶 = 𝐽𝑇𝜆, we can rewrite the equations of 

motion for 𝑛 bodies as  
𝑀𝑉 = 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡

𝐽𝑉 = 𝜀
 

 

• 𝜀 is the vector of force offsets which allows contact forces to perform 
work 

• We have too many unknowns: 𝑉, 𝑉 , and 𝜆 



Equations of motion 

• Since we know that 𝐹𝐶 = 𝐽𝑇𝜆, we can rewrite the equations of 

motion for 𝑛 bodies as  
𝑀𝑉 = 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡

𝐽𝑉 = 𝜀
 

 

• 𝜀 is the vector of force offsets which allows contact forces to perform 
work 

• We have too many unknowns: 𝑉, 𝑉 , and 𝜆 



Equations of motion 

• We approximate 𝑉 ≈
V2−V1

∆𝑡
 

 

• We replace 𝑉  
𝑀

V2−V1

∆𝑡
= 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡

𝐽𝑉2 = 𝜀
 

 

• We solve for 𝑉2  
𝑉2 = ∆𝑡𝑀−1 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡 + 𝑉1

𝑉2 = 𝐽𝑇𝜀
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• We approximate 𝑉 ≈
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∆𝑡
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𝑉2 = 𝐽𝑇𝜀
 

 



Equations of motion 

• We approximate 𝑉 ≈
V2−V1

∆𝑡
 

 

• We replace 𝑉  
𝑀

V2−V1

∆𝑡
= 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡

𝐽𝑉2 = 𝜀
 

 

• We solve for 𝑉2  
𝑉2 = ∆𝑡𝑀−1 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡 + 𝑉1

𝑉2 = 𝐽𝑇𝜀
 

 



Equations of motion 

• We can now finish solving for 𝜆  

• 𝐽𝑇𝜀 = ∆𝑡𝑀−1 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡 + 𝑉1 

 

• 𝐽𝑇𝜀 − 𝑉1− ∆𝑡𝑀−1𝐹𝑒𝑥𝑡 = ∆𝑡𝑀−1(𝐽𝑇𝜆) 

 

• 𝜀 − 𝐽𝑉1 − ∆𝑡𝐽𝑀−1𝐹𝑒𝑥𝑡 = ∆𝑡𝐽𝑀−1𝐽𝑇𝜆 

 



Iterative Solution 

• The equation can be restated in simpler form: 

 

•
𝜀

∆𝑡
−

𝐽𝑉1

∆𝑡
− 𝐽𝑀−1𝐹𝑒𝑥𝑡 = 𝐽𝑀−1𝐽𝑇𝜆  

 

 

• 𝐴𝑥 =  𝑏 for some 𝐴, 𝑏 

• These systems can be solved iteratively with a method such as 
Projected Gauss-Seidel (PGS) 

b A x 



Equations of motion 

• Once 𝜆 is computed, we can determine 𝐹𝑐 , 𝐹, and then 𝑉2 

• A regular integration step is then performed with the new velocities 
𝑉2 
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Physics Libraries 

• PhysX, Box2D, Chipmunk Physics and Bullet Physics 

https://developer.nvidia.com/physx-sdk
http://box2d.org/
https://chipmunk-physics.net/
http://www.bulletphysics.org/

