GRK 12

Dr Wojciech Palubicki

Today...

Basic Idea

• Limit motion of particles/ rigid bodies by introducing constraints.

Constraint Types

Contact and Friction

Constraint Types

• Distance: Cloth

Constraint Types

• Joint angle and distance constraints of ragdolls

Collision Response

- Solving physical constraints in addition to the equations of motion
- Constraints are mostly contact constraints, but also
 - Friction constraints
 - Distance constraints
 - Joint angle constraints
 - ...
- The ideal collision response system deals with all of these

Naive Take

- Apply the constraints to the **objects in pairs**
- Use the laws of conservation of motion for each collision; P₀ is the point of collision, x_A and x_B are the centers of mass of the objects, v⁻ is the pre-impact velocity of the objects, v⁺ is the post-impact velocity of the objects

•
$$f = \frac{-(1+\varepsilon)\left(N_0\cdot(v_A^--v_B^-)\right) + (\omega_A^-\cdot(r_A^-\times N_0^-) - \omega_B^-\cdot(r_B^-\times N_0^-))}{1/m_A + 1/m_B + (r_A^-\times N_0^-)^T I_A^-(r_A^-\times N_0^-) + (r_B^-\times N_0^-)^T I_A^-(r_B^-\times N_0^-)}$$

•
$$r_A = P_0 - x_A, r_B = P_0 - x_B$$

•
$$v_A^+ = v_A^- + f N_0 / m_A$$

•
$$\omega_A^+ = \omega_A^- + + I_A^- (r_A \times (fN_0))$$

• Push away from interpenetration as long as interpenetration exists

Naive Take

- Jitters a lot, and does not support stacking
- May be acceptable in very sparse scenarios (space/flight simulator)

Naive Take 2

- Apply the constraints to the objects in pairs
- Apply again during the same integration step
- Average/combine the various impulses
- Push apart objects so they do not penetrate
- Constraints are still broken
- Slow

Unconstrained Kinematics

• A rigid body is characterized by

•
$$\dot{x} = v$$

•
$$\dot{q} = \frac{1}{2}\omega q$$

Unconstrained Kinematics

• For a system of N bodies, we can define the system derivative as

$$\dot{X} = V = \begin{bmatrix} v_1 \\ \omega_1 \\ \vdots \\ v_n \\ \omega_n \end{bmatrix}$$

Constraints

Constraints

- Our system allows *pairwise* constraints between bodies
- The k-th constraint, between bodies i and j, has the form

 $C_k(x_i, q_i, x_j, q_j) = 0$

Constraints

• The vector C holds all the constraints. C = 0, or C(X(t)) = 0, is a function of the state vector, so by the chain rule

$$\dot{C}(X(t)) = \dot{C}(X)\dot{X}(t) = JV = 0$$

- Each constraint causes a reaction force f_c and a reaction torque τ_c
- The vector of all reaction forces is

We know that
$$\dot{C} = JV = 0$$

• $JV = \begin{bmatrix} J_1 \cdot V \\ \vdots \\ J_m \cdot V \end{bmatrix} = 0$

We know that
$$\dot{C} = JV = 0$$

• $JV = \begin{bmatrix} J_1 \cdot V \\ \vdots \\ J_m \cdot V \end{bmatrix} = 0$

• This means that V is orthogonal to each row of J

• Constraint forces perform no work, so $F_c \cdot V = 0$

 $F_c \cdot V = 0$

Distance Constraint

Distance Constraint

blend forces: $F_1\lambda_1 + F_2\lambda_2$

• We can use $F_c = J^T \lambda$ for some vector λ of undetermined (Lagrangian) force multipliers

$$F_c \cdot V = J^T \lambda \cdot V = \left(\sum_i J_i \lambda_i\right) \cdot V = \sum_i J_i \cdot V \lambda_i = \sum_i 0 \cdot \lambda_i = 0$$

- We compute the matrix J of constraints from the collision system
- We then solve for λ , compute F_c , and finally obtain V

Distance constraints

- The simplest constraint is a distance constraint
- Two points of two bodies must remain at a given distance

•
$$C(x_i, q_i, x_j, q_j) = \frac{1}{2}(|x_j - x_i|^2 - L^2) = 0$$

• If we derive this, we get
$$(d = |x_j - x_i|)$$

 $\dot{C}(x_i, q_i, x_j, q_j) = d \cdot (v_j + \omega_j \times r_j - v_i - \omega_i \times r_i)$

• We split this into a row for J and a part of V:

$$\dot{C}(x_i, q_i, x_j, q_j) = \begin{bmatrix} -d^T - (r_i \times d)^T & d^T & (r_j \times d)^T \end{bmatrix} \begin{bmatrix} v_i \omega_i v_j \omega_j \end{bmatrix}^T$$

a row of L

columns of V

Distance constraints

$$\dot{C}(x_1, q_1, x_2, q_2) = d \cdot (v_1 - v_2)$$

$$\dot{C}(x_1, q_1, x_2, q_2) = d \cdot (v_1 - v_2 - \omega_2 \times r_2)$$

Distance constraints

- Note that a row of J also contains many zeroes $(6 \times (N_{bodies} 2))$
- The only columns that are not zeroed are those corresponding to the bodies i and j

•
$$\dot{C}(x_i, q_i, x_j, q_j) = [\cdots 0 - d^T - (r_i \times d)^{T 0} \overset{\cdots}{} {}^0 d^T (r_j \times d)^T \cdots 0] V$$

- The contact constraint measures the object separation; it is negative in case of overlap
- $C(x_i, q_i, x_j, q_j) = (x_j + r_j x_i r_i) \cdot n_i = 0$
- $\dot{C}(x_i, q_i, x_j, q_j) =$ $(v_j + \omega_j \times r_j - v_i - \omega_i \times r_i) \cdot n_i + (x_j + r_j - x_i - r_i) \cdot \omega_i \times n_i$

We assume that both penetration and angular velocity are small, so we ignore the second term

•
$$\dot{C}(x_i, q_i, x_j, q_j) \approx (v_j + \omega_j \times r_j - v_i - \omega_i \times r_i) \cdot n_i$$

• We can now separate \dot{C} into J and V:

•
$$\dot{C}(x_i, q_i, x_j, q_j) = (v_j + \omega_j \times r_j - v_i - \omega_i \times r_i) \cdot n_i = [-n_i^T - (r_i \times n_i)^T n_i^T (r_j \times n_i)^T] [v_i \omega_i v_j \omega_j]^T$$

- Notice that the force between bodies in contact can push them apart, but not pull them together
- This means that $0 \le \lambda_k \le +\infty$, where k is the constraint index for a contact constraint

- Due to numerical errors or issues with discrete steps penetration might happen anyway
- We allow the velocity to be modulated by a *pushing factor* which is proportional to the penetration
- This means that for contact constraints $J_i V = -\beta C_i$, for $\beta \leq \frac{1}{\Lambda t}$

Friction constraints

- Friction constraints are very similar to contact constraints
- Friction happens along the tangent plane, so we have two constraints (one for u_i = T and one for u_i = B)

•
$$\dot{C}(x_i, q_i, x_j, q_j) = (v_j + \omega_j \times r_j - v_i - \omega_i \times r_i) \cdot u_i =$$

 $[-u_i^T - (r_i \times u_i)^T u_i^T (r_j \times u_i)^T] [v_i \omega_i v_j \omega_j]^T$
• $\dot{C}(x_i, q_i, x_j, q_j) = (v_j + \omega_j \times r_j - v_i - \omega_i \times r_i) \cdot u_j =$
 $[-u_j^T - (r_i \times u_j)^T u_j^T (r_j \times u_j)^T] [v_i \omega_i v_j \omega_j]^T$

Friction constraints

- We must also bound the friction value (this is an approximation) to take the friction coefficient into account
- $-\mu m_c g \leq \lambda_{u_1} \leq \mu m_c g$ and $-\mu m_c g \leq \lambda_{u_2} \leq \mu m_c g$, where m_c is the mass assigned to the contact point

- We now integrate our constraint system with the equations of motion
- We know the Newton Euler equations of motion are
- $m\dot{v} = F = f_c + f_{ext}$
- $I\dot{\omega} = \tau = \tau_c + \tau_{ext}$

• We can define a single matrix for all the bodies

$$M = \begin{pmatrix} m_1 E_{3x3} & 0 & \cdots & 0 & 0 \\ 0 & I_1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & m_n E_{3x3} & 0 \\ 0 & \cdots & 0 & 0 & I_n \end{pmatrix}$$

• E_{3x3} is the identity matrix

• We can easily invert this matrix

$$M^{-1} = \begin{pmatrix} (m_1 E_{3x3})^{-1} & 0 & \cdots & 0 & 0 \\ 0 & I_1^{-1} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & (m_n E_{3x3})^{-1} & 0 \\ 0 & \cdots & 0 & 0 & I_n^{-1} \end{pmatrix}$$

• We define a single vector for all the external forces

•
$$F_{ext} = \begin{bmatrix} f_{ext_1} \\ \tau_{ext_1} \\ \vdots \\ f_{ext_n} \\ \tau_{ext_n} \end{bmatrix}$$

- Since we know that $F_c = J^T \lambda$, we can rewrite the equations of motion for n bodies as $\begin{cases} M\dot{V} = J^T \lambda + F_{ext} \\ JV = \varepsilon \end{cases}$
- ε is the vector of force offsets which allows contact forces to perform work

- Since we know that $F_c = J^T \lambda$, we can rewrite the equations of motion for n bodies as $\begin{cases} M\dot{V} = J^T \lambda + F_{ext} \\ JV = \varepsilon \end{cases}$
- ε is the vector of force offsets which allows contact forces to perform work
- We have too many unknowns: V, \dot{V} , and λ

• We approximate
$$\dot{V} \approx \frac{V_2 - V_1}{\Delta t}$$

• We approximate
$$\dot{V} \approx \frac{V_2 - V_1}{\Delta t}$$

• We replace
$$\dot{V} \begin{cases} M \frac{V_2 - V_1}{\Delta t} = J^T \lambda + F_{ext} \\ JV_2 = \varepsilon \end{cases}$$

• We approximate
$$\dot{V} \approx \frac{V_2 - V_1}{\Delta t}$$

• We replace
$$\dot{V} \begin{cases} M \frac{V_2 - V_1}{\Delta t} = J^T \lambda + F_{ext} \\ JV_2 = \varepsilon \end{cases}$$

• We solve for
$$V_2 \begin{cases} V_2 = \Delta t M^{-1} (J^T \lambda + F_{ext}) + V_1 \\ V_2 = J^T \varepsilon \end{cases}$$

- We can now finish solving for λ
- $J^T \varepsilon = \Delta t M^{-1} (J^T \lambda + F_{ext}) + V_1$

•
$$J^T \varepsilon - V_1 - \Delta t M^{-1} F_{ext} = \Delta t M^{-1} (J^T \lambda)$$

•
$$\varepsilon - JV_1 - \Delta t J M^{-1} F_{ext} = \Delta t J M^{-1} J^T \lambda$$

Iterative Solution

• The equation can be restated in simpler form:

•
$$\frac{\varepsilon}{\Delta t} - \frac{JV_1}{\Delta t} - JM^{-1}F_{ext} = JM^{-1}J^T\lambda$$

b A x

- Ax = b for some A, b
- These systems can be solved iteratively with a method such as Projected Gauss-Seidel (PGS)

- Once λ is computed, we can determine F_c , F, and then V_2
- A regular integration step is then performed with the new velocities \boldsymbol{V}_2

Physics Libraries

• <u>PhysX</u>, <u>Box2D</u>, <u>Chipmunk Physics</u> and <u>Bullet Physics</u>