
GRK 12
Dr Wojciech Palubicki

Where we were at…

State Update Broad Phase Narrow Phase
Collision

Response

Today…

State Update Broad Phase Narrow Phase
Collision

Response

Basic Idea

• Limit motion of particles/ rigid bodies by introducing constraints.

Constraint Types

• Contact and Friction

Constraint Types

• Distance: Cloth

Constraint Types

• Joint angle and distance constraints of ragdolls

Collision Response

• Solving physical constraints in addition to the equations of motion

• Constraints are mostly contact constraints, but also
• Friction constraints

• Distance constraints

• Joint angle constraints

• ...

• The ideal collision response system deals with all of these

Contact constraint

Contact constraint

Fr
ic

ti
o

n
 c

o
n

st
ra

in
t

Contact constraint

Fr
ic

ti
o

n
 c

o
n

st
ra

in
t

Contact constraint

Fr
ic

ti
o

n
 c

o
n

st
ra

in
t

Naive Take

• Apply the constraints to the objects in pairs

• Use the laws of conservation of motion for each collision; P0 is the point of
collision, xA and xB are the centers of mass of the objects, v- is the pre-
impact velocity of the objects, v+ is the post-impact velocity of the objects

• 𝑓 =
− 1+𝜀 𝑁

0
∙ 𝑣𝐴

−−𝑣𝐵
− +(𝜔𝐴

−∙ 𝑟
𝐴
×𝑁

0
−𝜔𝐵

−∙(𝑟
𝐵
 × 𝑁

0
))

1 𝑚
𝐴
+ 1 𝑚𝐵 + 𝑟

𝐴
×𝑁

0
𝑇𝐼𝐴
− 𝑟

𝐴
×𝑁

0
+ 𝑟

𝐵
×𝑁

0
𝑇𝐼𝐴
−(𝑟

𝐵
 × 𝑁

0
)

• 𝑟𝐴 = 𝑃0 − 𝑥𝐴, 𝑟𝐵 = 𝑃0 – 𝑥𝐵

• 𝑣𝐴
+ = 𝑣𝐴

− + 𝑓𝑁0/𝑚𝐴

• 𝜔𝐴
+ = 𝜔𝐴

− + + 𝐼𝐴
− (𝑟𝐴 × (𝑓𝑁0))

• Push away from interpenetration as long as interpenetration exists

Naive Take

• Jitters a lot, and does not support stacking

• May be acceptable in very sparse scenarios (space/flight simulator)

Naive Take 2

• Apply the constraints to the objects in pairs

• Apply again during the same integration step

• Average/combine the various impulses

• Push apart objects so they do not penetrate

• Constraints are still broken

• Slow

Unconstrained Kinematics

• A rigid body is characterized by

• 𝑥 = 𝑣

• 𝑞 =
1

2
𝜔𝑞

Unconstrained Kinematics

• For a system of N bodies, we can define the system derivative as

𝑋 = 𝑉 =

𝑣1
𝜔1
⋮
𝑣𝑛
𝜔𝑛

Constraints

Position x
𝐶 𝑥 = 𝑥 − 𝑑 = 0

Constraints

Position x
𝐶 𝑥 = 𝑥 − 𝑑 = 0

Constraints

Position x
𝐶 𝑥 = 𝑥 − 𝑑 = 0

Legal positions

Constraints

• Our system allows pairwise constraints between bodies

• The k-th constraint, between bodies i and j , has the form

𝐶𝑘 (𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗) = 0

Constraints

• The vector C holds all the constraints. 𝐶 = 0, or 𝐶(𝑋(𝑡)) = 0, is a
function of the state vector, so by the chain rule

𝐶 𝑋(𝑡) = 𝐶 𝑋 𝑋 (𝑡) = 𝐽𝑉 = 0

Constraint forces

• Each constraint causes a reaction force 𝑓𝑐 and a reaction torque τ𝑐

• The vector of all reaction forces is

𝐹𝑐 =

𝑓𝑐1
𝜏𝑐1

⋮
𝑓𝑐𝑛
𝜏𝑐𝑛

Constraint forces

We know that 𝐶 = 𝐽𝑉 = 0

• 𝐽𝑉 =
𝐽1 ∙ 𝑉
⋮

𝐽𝑚 ∙ 𝑉
= 0

• This means that 𝑉 is orthogonal to each row of 𝐽

Constraint forces

We know that 𝐶 = 𝐽𝑉 = 0

• 𝐽𝑉 =
𝐽1 ∙ 𝑉
⋮

𝐽𝑚 ∙ 𝑉
= 0

• This means that 𝑉 is orthogonal to each row of 𝐽

Constraint forces

• Constraint forces perform no work, so 𝐹𝑐 ∙ 𝑉 = 0

Contact Constraint

velocity

Contact Constraint

velocity

F

Contact Constraint

velocity

F

adjusted
velocity

𝐹𝑐 ∙ 𝑉 = 0

Distance Constraint

Distance Constraint

velocity

velocity

F1

F2

velocity

F1

F2

blend forces:
 𝐹1𝜆1 + 𝐹2𝜆2

Constraint forces

• We can use 𝐹𝑐 = 𝐽𝑇𝜆 for some vector 𝜆 of undetermined
(Lagrangian) force multipliers

𝐹𝑐 ∙ 𝑉 = 𝐽𝑇𝜆 ∙ 𝑉 = 𝐽𝑖𝜆𝑖
𝑖

∙ 𝑉= 𝐽𝑖 ∙ 𝑉𝜆𝑖
𝑖

= 0 ∙ 𝜆𝑖
𝑖

= 0

Constraint forces

• We compute the matrix 𝐽 of constraints from the collision system

• We then solve for 𝜆, compute 𝐹𝑐, and finally obtain 𝑉

Distance constraints

• The simplest constraint is a distance constraint

• Two points of two bodies must remain at a given distance

• 𝐶 (𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗) =
1

2
(𝑥𝑗 − 𝑥𝑖

2 − 𝐿2) = 0

• If we derive this, we get (𝑑 = 𝑥𝑗 − 𝑥𝑖)
𝐶 (𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗) = 𝑑 ∙ (𝑣𝑗 + 𝜔𝑗 × 𝑟𝑗 − 𝑣𝑖 −𝜔𝑖 × 𝑟𝑖)

• We split this into a row for 𝐽 and a part of 𝑉:

𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = −𝑑𝑇 − 𝑟𝑖 × 𝑑 𝑇 𝑑𝑇

𝑟𝑗 × 𝑑 𝑇 𝑣𝑖𝜔𝑖𝑣𝑗𝜔𝑗
𝑇

a row of J columns of V

Distance constraints

𝑥 1

𝑥 2

𝐶 𝑥1, 𝑞1, 𝑥2, 𝑞2 = 𝑑 ∙ 𝑣1 − 𝑣2

𝑑

𝑣1

𝑣2

Distance constraints

𝑥 1

𝑥 2

𝑑

𝑣1

𝑣2

𝐶 𝑥1, 𝑞1, 𝑥2, 𝑞2 = 𝑑 ∙ 𝑣1 − 𝑣2 − 𝜔2 × 𝑟2

𝑟2

Distance constraints

• Note that a row of J also contains many zeroes (6 × (𝑁𝑏𝑜𝑑𝑖𝑒𝑠 − 2))

• The only columns that are not zeroed are those corresponding to the
bodies i and j

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = ⋯0 − 𝑑𝑇 − 𝑟𝑖 × 𝑑 𝑇 0 ⋯ 0 𝑑𝑇 𝑟𝑗 × 𝑑 𝑇⋯0 𝑉

a row of J

Contact constraints

𝑥 1

𝑛1

𝑟2

𝑟1

Contact constraints

• The contact constraint measures the object separation; it is negative
in case of overlap

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = (𝑥𝑗 + 𝑟𝑗 − 𝑥𝑖 − 𝑟𝑖) ∙ 𝑛𝑖 = 0

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 =
(𝑣𝑗 + 𝜔𝑗 × 𝑟𝑗 − 𝑣𝑖 −𝜔𝑖 × 𝑟𝑖) ∙ 𝑛𝑖 + (𝑥𝑗 + 𝑟𝑗 − 𝑥𝑖 − 𝑟𝑖) ∙ 𝜔𝑖 × 𝑛𝑖

We assume that both penetration and angular velocity are small, so we
ignore the second term

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 ≈ (𝑣𝑗 + 𝜔𝑗 × 𝑟𝑗 − 𝑣𝑖 − 𝜔𝑖 × 𝑟𝑖) ∙ 𝑛𝑖

Contact constraints

• We can now separate 𝐶 into 𝐽 and 𝑉:

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = 𝑣𝑗 + 𝜔𝑗 × 𝑟𝑗 − 𝑣𝑖 − 𝜔𝑖 × 𝑟𝑖 ∙ 𝑛𝑖 =

−𝑛𝑖
𝑇 − 𝑟𝑖 × 𝑛𝑖

𝑇 𝑛𝑖
𝑇 𝑟𝑗 × 𝑛𝑖

𝑇 𝑣𝑖 𝜔𝑖
𝑣𝑗 𝜔𝑗

𝑇

Contact constraints

• Notice that the force between bodies in contact can push them apart,
but not pull them together

• This means that 0 ≤ 𝜆𝑘 ≤ +∞, where 𝑘 is the constraint index for a
contact constraint

Contact constraints

• Due to numerical errors or issues with discrete steps penetration
might happen anyway

• We allow the velocity to be modulated by a pushing factor which is
proportional to the penetration

• This means that for contact constraints 𝐽𝑖𝑉 = − 𝛽𝐶𝑖 , for 𝛽 ≤
1

∆𝑡

Friction constraints

• Friction constraints are very similar to contact constraints

• Friction happens along the tangent plane, so we have two constraints
(one for ui = T and one for uj = B)

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = 𝑣𝑗 + 𝜔𝑗 × 𝑟𝑗 − 𝑣𝑖 − 𝜔𝑖 × 𝑟𝑖 ∙ 𝑢𝑖 =

−𝑢𝑖
𝑇 − 𝑟𝑖 × 𝑢𝑖

𝑇 𝑢𝑖
𝑇 𝑟𝑗 × 𝑢𝑖

𝑇 𝑣𝑖 𝜔𝑖
𝑣𝑗 𝜔𝑗

𝑇

• 𝐶 𝑥𝑖, 𝑞𝑖, 𝑥𝑗, 𝑞𝑗 = 𝑣𝑗 + 𝜔𝑗 × 𝑟𝑗 − 𝑣𝑖 − 𝜔𝑖 × 𝑟𝑖 ∙ 𝑢𝑗 =

−𝑢𝑗
𝑇 − 𝑟𝑖 × 𝑢𝑗

𝑇 𝑢𝑗
𝑇 𝑟𝑗 × 𝑢𝑗

𝑇 𝑣𝑖 𝜔𝑖
𝑣𝑗 𝜔𝑗

𝑇

Friction constraints

• We must also bound the friction value (this is an approximation) to
take the friction coefficient into account

• −𝜇𝑚𝑐𝑔 ≤ 𝜆𝑢1 ≤ 𝜇𝑚𝑐𝑔 and −𝜇𝑚𝑐𝑔 ≤ 𝜆𝑢2 ≤ 𝜇𝑚𝑐𝑔, where 𝑚𝑐 is
the mass assigned to the contact point

Equations of motion

• We now integrate our constraint system with the equations of motion

• We know the Newton - Euler equations of motion are

• 𝑚𝑣 = 𝐹 = 𝑓𝑐 + 𝑓𝑒𝑥𝑡

• 𝐼𝜔 = 𝜏 = 𝜏𝑐 + 𝜏𝑒𝑥𝑡

Equations of motion

• We can define a single matrix for all the bodies

𝑀 =

𝑚1𝐸3𝑥3
0
⋮
0
0

0
𝐼1
⋮
⋯
⋯

⋯
⋯
⋱
0
0

0
0
⋮

𝑚𝑛𝐸3𝑥3
0

0
0
⋮
0
𝐼𝑛

• 𝐸3𝑥3 is the identity matrix

Equations of motion

• We can easily invert this matrix

𝑀−1 =

(𝑚1𝐸3𝑥3)
−1

0
⋮
0
0

0
𝐼1
−1

⋮
⋯
⋯

⋯
⋯
⋱
0
0

0
0
⋮

(𝑚𝑛𝐸3𝑥3)
−1

0

0
0
⋮
0

𝐼𝑛
−1

Equations of motion

• We define a single vector for all the external forces

• 𝐹𝑒𝑥𝑡 =

𝑓𝑒𝑥𝑡1
𝜏𝑒𝑥𝑡1

⋮
𝑓𝑒𝑥𝑡𝑛
𝜏𝑒𝑥𝑡𝑛

Equations of motion

• Since we know that 𝐹𝐶 = 𝐽𝑇𝜆, we can rewrite the equations of

motion for 𝑛 bodies as
𝑀𝑉 = 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡

𝐽𝑉 = 𝜀

• 𝜀 is the vector of force offsets which allows contact forces to perform
work

• We have too many unknowns: 𝑉, 𝑉 , and 𝜆

Equations of motion

• Since we know that 𝐹𝐶 = 𝐽𝑇𝜆, we can rewrite the equations of

motion for 𝑛 bodies as
𝑀𝑉 = 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡

𝐽𝑉 = 𝜀

• 𝜀 is the vector of force offsets which allows contact forces to perform
work

• We have too many unknowns: 𝑉, 𝑉 , and 𝜆

Equations of motion

• We approximate 𝑉 ≈
V2−V1

∆𝑡

• We replace 𝑉
𝑀

V2−V1

∆𝑡
= 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡

𝐽𝑉2 = 𝜀

• We solve for 𝑉2
𝑉2 = ∆𝑡𝑀−1 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡 + 𝑉1

𝑉2 = 𝐽𝑇𝜀

Equations of motion

• We approximate 𝑉 ≈
V2−V1

∆𝑡

• We replace 𝑉
𝑀

V2−V1

∆𝑡
= 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡

𝐽𝑉2 = 𝜀

• We solve for 𝑉2
𝑉2 = ∆𝑡𝑀−1 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡 + 𝑉1

𝑉2 = 𝐽𝑇𝜀

Equations of motion

• We approximate 𝑉 ≈
V2−V1

∆𝑡

• We replace 𝑉
𝑀

V2−V1

∆𝑡
= 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡

𝐽𝑉2 = 𝜀

• We solve for 𝑉2
𝑉2 = ∆𝑡𝑀−1 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡 + 𝑉1

𝑉2 = 𝐽𝑇𝜀

Equations of motion

• We can now finish solving for 𝜆

• 𝐽𝑇𝜀 = ∆𝑡𝑀−1 𝐽𝑇𝜆 + 𝐹𝑒𝑥𝑡 + 𝑉1

• 𝐽𝑇𝜀 − 𝑉1− ∆𝑡𝑀−1𝐹𝑒𝑥𝑡 = ∆𝑡𝑀−1(𝐽𝑇𝜆)

• 𝜀 − 𝐽𝑉1 − ∆𝑡𝐽𝑀−1𝐹𝑒𝑥𝑡 = ∆𝑡𝐽𝑀−1𝐽𝑇𝜆

Iterative Solution

• The equation can be restated in simpler form:

•
𝜀

∆𝑡
−

𝐽𝑉1

∆𝑡
− 𝐽𝑀−1𝐹𝑒𝑥𝑡 = 𝐽𝑀−1𝐽𝑇𝜆

• 𝐴𝑥 = 𝑏 for some 𝐴, 𝑏

• These systems can be solved iteratively with a method such as
Projected Gauss-Seidel (PGS)

b A x

Equations of motion

• Once 𝜆 is computed, we can determine 𝐹𝑐 , 𝐹, and then 𝑉2

• A regular integration step is then performed with the new velocities
𝑉2

State Update Broad Phase Narrow Phase
Collision

Response

Physics Libraries

• PhysX, Box2D, Chipmunk Physics and Bullet Physics

https://developer.nvidia.com/physx-sdk
http://box2d.org/
https://chipmunk-physics.net/
http://www.bulletphysics.org/

