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Matrix vector product as a
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T(x) = Ax




Fundamental Transformations

,
0.1, OJ
(-L.0,0) (0,0,-1)
©,0,1) (1,0,0)
Za Nax
Scaling

y,
,1, 0)|
(-1,0,0) (0,0,-1)
(0,0.D (1,0,0)
72 Nax
Rotation

s

©,1, O)I

(-1,0,0) (0,0,-1)

(0.0, (L,0,0)
2 Nax

Translation



Simplified Rendering Pipeline
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World space transformation
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Camera Transformation

e View frustum:
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Camera Transformation
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Camera Transformation
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Camera Transformation
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Camera Transformation
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Camera Transformation

e View frustum:
— Top plane
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Camera Transformation
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Camera Transformation
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Projection plane
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Projection plane
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Image/view plane




Parallel projection




Perspective projection













Projections

Perspective projection Orthographic projection



Orthographic projection

(]
am
<}




Non-orthographic projection

]

—
<}

—

1
1
;
;
/
1
1
1
1
1
1
;
;
/
/
I
1
1
/
,
/
;
/
1
I
I
I
I
J
/
;
1
1
1
1
I
,l
! N
/
/
1
1
:
1
1
/
;
/
/
I
1
1
1
/
,
;
/
1
I
1
1
I
,\




Orthographic projection
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Canonical view volume
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Canonical view volume
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Viewport transformation
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Viewport transformation
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Viewport transformation
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Viewport transformation
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Rendermg pipeline

World space
* Every step we

express as a matrix
transformation. The
whole pipeline can
then be defined
with one matrix
operation.
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Rendermg pipeline
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Rendermg pipeline

v * Every step we

bl Q express as a matrix
e transformation. The
t whole pipeline can
B— = then be defined
Orthographic view volume with one matrix

operation.
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Rendermg pipeline
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Rendermg pipeline
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Rendering pipeline

* Every step we
express as a matrix
transformation. The
whole pipeline can
then be defined

2D with one matrix

operation.




Canonical view volume

e The canonical view volume is a
2 X 2 X 2 cube with its center at
the origin o

>

e Assume that the view frustum
has been transformed to such a
shape
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Canonical view volume

The canonical view volumeis a 2
X 2 X 2 cube with its center at
the origin

Assume that the view frustum
has been transformed to such a
shape

We cut the z-coordinate
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Transformation

 We have to map the
square [-1, 1]°to a
rectangle [0, n,] x [0, n,]
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Transformation L

We have to map the square [-1, 1]?
to a rectangle [0, n,] x [0, n,] -
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We have to map the square [-1, 1]?
to a rectangle [0, n,] x [0, n,]

The following scaling matrix
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Transformation
We have to map the square [-1, 1]?
to a rectangle [0, n,] x [0, n,] n
The following matrix translates to -2
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Transformation

* In practice pixels represent
coordinates in integer units
therefore we have to translate
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Transformation

* The projection is simply the ,,cutting” of the z-coordinate

e However we still need to be able to concatenate the matrix with
other matrices, so the final 4D matrix is:
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Orthographic view volume (1)

* First we align the center with the origin
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Orthographic view volume (1)
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Orthographic view volume (1)

* First we align the center with the origin g
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Orthographic view volume (1)
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~Orthographic view volume e
* Then we have to scale o | ;

the volume to the Ly
extents of [-1, 1]:
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e Then we have to scale the volume to

the extents of [-1, 1]:

~Orthographic view volume
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~Orthographic view volume

 We multiply the matrices together to obtain a
single matrix expressing the orthographic view
volume:
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~Orthographic view volume

 We multiply the matrices together to obtain a
single matrix expressing the orthographic view
volume:
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Rendering pipeline
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Rendering pipeline

* Transformation:
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Ypixel
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 World space:

— Vectors, X,y,i Z
* Camera space:
— Vectors e,i g
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Allgnmg coordinate systems

* To transform one space into another we need
a single coordinate system for both

World space Camera space
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Aliéning coordinate systems

* First basis vector:
—txg=1
e Second basis vector:

—g XU="v

 Third basis vector:

——g:=Ww
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Allgnmg coordinate systems

* Align the origins v
* Align the basis vector
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* Align the origins via translation:
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Allgnmg coordinate systems

Rotation in the opposite direction is trivial:
Uy Uy w, O
Uy vy wy, 0
u, v, w, 0
0 0 0 1
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* |n case of an orthonormal matrix the inverse is

the transpose matrix (vectors u,v,w have to be
normalized):

Uy Uy u, O] . -
L 0 0 0O 1
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Allgnmg coordinate systems

* The transformation matrix from world space to view space
is then:

Uy Uy u, 011 0 0 -—ey
M _ Uy Vy v, 0]|0 1 0 —€y
AWy Wy w, 0ff0 0 1 —e,
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Parallel projection

+2Z

yAAN




In OpenGL

(program, "transformation"), 1, , ( *)&transformation);




In OpenGL

(program, "transformation"), 1, , ( *)&transformation);

Model Matrix View Matrix Projection Matrix

Object Space World Space View Space Clip Space



Perspective projection

 What is perspective?




Perspective projection

* What is perspective?

 The size of an object is proportional to its distance from the
viewpoint.




Rendering pipeline
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Rendering pipeline
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Transformation of the view frustum

View frustum Orthographic view volume
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Transformation of the view frustum

View frustum Orthographic view volume
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view plane far plane



view plane far plane



view plane far plane



Projection on a plane

View plane



Projection on a plane

View plane



Projection on a plane

View plane

or



Projection on a plane

View plane



Assumptions

* We assume that:
— We are looking down the negative z-axis
— We project on the near plane

 So distance d = -n, which means:



Assumptions

* We assume that:
— We are looking down the negative z-axis
— We project on the near plane

 So distance d = -n, which means:
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Assumptions

e \We assume that:

— We are looking down the negative z-axis
— We project on the near plane

 So distance d = -n, which means:
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Homogeneous coordinates

So far matrix multiplications were linear transformations,
meaning we could only obtain transformations such as:

/

X = a1x + byy +cqiz



Homogeneous coordinates

So far matrix multiplications were linear transformations,
meaning we could only obtain transformations such as:

/

X = a1x + byy +cqiz

Homogeneous coordinates allow representing points (x, vy, z)
as (x, v, z, 1) and allow us to use affine transformations, e.g.:

!

X = a1x+b1y+clz+d1



Homogeneous coordinates

* In homogeneous coordinates
(x,y, z, 1) represents the point (x, v, z)

Additionally, we now allow other points

(x, y, z, w) which specifies the point (W, = W)

homogeneous cartesian



Homogeneous coordinates

Then matrix transformations become:

x' a;, by ¢ Ty
y'| _laz by 2 Ty
z' a3 by ¢z T,
1 a, by, ¢4 w

ax +byy+cz+ Ty,
ax + by +cz+T,
azx + by +c3z+T,
asx + byy +cuz+w
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Homogeneous coordinates

Then matrix transformations become:

x' a, by ¢
y'| _laz by ¢ ax + by +cz+T,
2| azx + by +c3z+ T,
1

asx + byy +cuz+w

T 338
_ N R

\ lalx + b1y +ciz+ Ty

a1x +biy+ciz+ T,
axx + b,y + ¢,z + T, | homogenization
azx + bzy+c3z+T,
asxX + byy +c4z+w




Homogeneous coordinates

Then matrix transformations become:

x' a, by ¢
y'| _laz by ¢ ax + by +cz+T,
2| azx + by +c3z+ T,
1

asx + byy +cuz+w

T 338
_ N R

\ lalx + b1y +ciz+ Ty

a1x +biy+ciz+ T,
azx + b,y + ¢,z + T, | homogenization
azx + bzy+c3z+T,
agx + by +cuz +w




Homogeneous coordinates

Then matrix transformations become:

x! a; by ¢ T Q[x Gmx+by+cz+T,
y'| _|az by 2 Ty||ly| |a2x+byy+cz+T,
7z’ az by ¢z T,||z asx + bsy + c3z + T,
1 ay b4 Cy w 1 asx + b4y + 4z +w
ra1X+b1y+C1Z+Ty]
a1 x+by+cz+T, Gux byt Caztw
axx + byy + ¢,z + Ty homogenization AzX+byy+C22+Ty,
agx+byy+caz+w
azx +byy+c3z+T, Gax+bay+CaztT,
asx + by +cz+w PP SS—
1




Homogeneous coordinates

. Then matrix transformations become:

x! a; by ¢ T Q[x Gmx+by+cz+T,
. y'| _|az by 2 Ty||ly| |a2x+byy+cz+T,
7z’ az by ¢z T,||z asx + bsy + c3z + T,

1 ay b4 Cy w 1 asx + b4y + 4z +w
ra1X+b1y+C1Z+Ty]

a1 x+by+cz+T, Gux byt Caztw

axx + byy + ¢,z + Ty homogenization AzX+byy+C22+Ty,

| agx+byy+caz+w
azx +byy+c3z+T, Gax+bay+CaztT,

asx + by +cz+w PP SS—
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Homogeneous coordinates Cartesian coordinates



Transformation of the view frustum

a1X +biy+ciz+ T,
AgX + byy + 4z +w
Calculation: [axx + by + ¢z + T, Goal:

agXx + by +cpz +w
azx + b3y +c3z+T,

asx + by +c4z +w
L 1
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Transformation of the view frustum

a1X +biy+ciz+ T,
AgX + byy + 4z +w
Calculation: [axx + by + ¢z + T, Goal:

Hh

Fourth row

agXx + by +cpz +w
azx + b3y +c3z+T,

asx + by +c4z +w
L 1

QNN|\§N|§I
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Transformation of the view frustum

a1X +biy+ciz+ T,
AgX + byy + 4z +w
Calculation: [axx + by + ¢z + T, Goal:

.

Fourth row

agXx + by +cpz +w
azx + b3y +c3z+T,

asx + by +c4z +w
L 1
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Transformation of the view frustum

a1X +biy+ciz+ T, MXA
AgX + byy + 4z +w z
Calculation: [axx + by + ¢z + T, Goal: |
agXx + by +cpz +w g
azx + b3y +c3z+T, [ 1
AgX + byy + C4z + W
' ! no 0 o][*
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Transformation of the view frustum

a1X +biy+ciz+ T, XA
AgX + byy + 4z +w z
Calculation: [axx + by + ¢z + T, Goal: |V
agXx + by +cpz +w g
azx + b3y +c3z+T, [ 1
AgX + byy + C4z + W
' ! n0o 0 o]l
0o n 0 0f})
: : 7
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First and second row



What about the third row
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Transformation of the view frustum

near plane n far plane f



Transformation of the view frustum

near plane n far plane f



Transformation of the view frustum

near plane n far plane f



Transformation of the view frustum

near plane n far plane f



Transformation of the view frustum

near plane n far plane f



Transformation of the view frustum

z, has to preserve order of vertices

-
e

near plane n far plane f



Transformation of the view frustum

near plane n far plane f



Transformation of the view frustum

near plane n far plane f



Preserving order of vertices

_ fn
. Zp—n+f—7

* Order along the z-axis is preserved if 0 > n = z; > z; = f tozy, > Zy,



Preserving order of vertices
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* Order along the z-axis is preserved if 0 > n = z; > z; = f tozy, > Zy,

* Z1p T Zyp
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Preserving order of vertices

_ fn
. Zp—n+f—7

* Order along the z-axis is preserved if 0 > n = z; > z; = f tozy, > Zy,

fn_fn_ (z1-22)fn

Zy Z1 ARY)

Zip — Z2p <



Preserving order of vertices

fn
Zp,=n+f——

Z
Order along the z-axis is preserved if 0 >n = z; > z, = f tozy), > 7y,

_fn_fn_ (z;a-z)fn

Z — Z
1p 2p Z2 Z1 Z1Z3

fn

Z1Z3

Because f, 74, z,,n < 0 it follows > 0andz; > z, meaningz; — z, >0



Preserving order of vertices

fn
Zp,=n+f——

Z
Order along the z-axis is preserved if 0 >n = z; > z, = f tozy), > 7y,

_fn_fn_ (z;a-z)fn

Z — Z
1p 2p Z2 Z1 Z1Z3

fn

Z1Z3

Because f, 74, z,,n < 0 it follows > 0andz; > z, meaningz; — z, >0

S0 Z1y > Zyy



Transformation of the view frustum

fn 1

Zp=n+f—— o> Z
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Transformation of the view frustum
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Matrix P

_n o O O_




Matrix P




Perspective transformation matrix

* Our final perspective transformation matrix

M, s is then:

* Mper = MorenP



Perspective transformation matrix

* Our final perspective transformation matrix

M, s is then
n 0 0 O
0 0 O
y Mper = MortnP = Moren 0 8 n+f —-nf
0 0 1 0 |




Perspective transformation matrix

* Our final perspective transformation matrix
M, s is then

0 0 0 7 2n l-r 0
o R

Mper = M, +nP = Myyren 0 0 n+f -nf — 0 t(_)b 1134.;:1 2fn

0 0 1 0 | 0 0 nf f-n

| 1 0 A
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Rendermg pipeline

Rendering pipeline with
orthographic projection:
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HC enable Translation
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HC enable Translation

endil

Homogeneous coordinates in 3D




HC enable Translation

7z
7z
7z
.
. < L
7z
earing e p
7, s .
7, C .
-7, s
A, s
. " .
7z P
/, // ’
’ 7’




HC enable Translation

Translation in 2D



HC enable Perspective
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https://en.wikipedia.org/wiki/Homogeneous coordinates
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Drawing on the Display

* The following pseudo-code
. . compute M,
illustrates how to draw a line compute M.,

between two pointsaand b compute M,
M = Mvp Mper Mean
for each line segment (a, b) do
p=Ma
g=MD>b
drawline(p,/pys Py/Pu, Ax/Au, dy/qw)



