GRK 4

Dr W Palubicki

Perspective projection

* What is perspective?

* The size of an object is proportional to its distance from the
viewpoint.

Perspective Math

y
%
)
-
N M y
Z Z
View plane 1]

SNENE

Homogeneous coordinates

* In homogeneous coordinates
(x, v, z, 1) represents the point (x, v, z)

Additionally, we now allow other points

: : : Xry z
(x, y, z, w) which specify the points (W, = W)

homogeneous cartesian

Matrix P

Perspective transformation matrix

* Our final perspective transformation matrix
M, s is then

0 0 0 . 2n l-r 0
O R

Mper = MorenP = Moren 0 0 n+f —-nf|"— 0 t(_)b 1134.;:1 2fn

0 0 1 0 | 0 0 nf f-n

! 1 0

\\\\\

Rendermg pipeline

Rendering pipeline with
orthographic projection:

—————————

X

y
z

1
* Rendering pipeline with

~~~~~~~~~~ y MvaortMcam

s
LN\
v
/

perspective projection:

X

y
Z

1

A
AN - M, MperMcam

Ji




Drawing on the Display

* The following pseudo-code
. . compute M,
illustrates how to draw a line compute M,..

between two pointsaand b compute M,
M = Mvp Mper Mean
for each line segment (a, b) do
p=Ma
g=Mb>b
drawline(p,/p,, Py/Pu, dx/Aw, 9y/ )



Drawing Order Problem




Why?

Both points projected to the same position

AN

view plane

far plane



Painter’s algorithm

-~




Painter’s algorithm

e Algorithm draws polygons in relation to
distance from camera

* Smallest coordinate z, of all polygons is used
to determine the distance

* Closer polygons are drawn on top of further
ones



Example




Partial polygon overlay




z-buffer / depth buffer

Z-buffer algorithm is similar to painter’s algorithm
but at the scale of pixels

Two buffers (arrays) are created where each pixel
corresponds to one lement of the array

depth buffer stores distance z from the nearest
surface in world space for each pixel

frame buffer stores indices of polygons (to later
on select corresponding colors)



z-buffer / depth buffer

Algorithm 1 Z buffer

Require: a set of polygons P, a depth buffer array Z and a frame buffer array F
initialise Z to z,,ax
for all polygons in P do
for all pixels in the current polygon do
calculate the = co-ordinate of the point corresponding to the current pixel
if z< Z(x.y) then
Replace Z(x,y) with =z
Replace F'(z.y) with the colour of the current polygon
end if
end for
end for
Display F' on screen




o0 | OO

oC | OO

o o] fo o] o o) fo ¢

OO0 100|100

o0 |00

o0

o oo ol jo o} [o o} N0 o] [o o}l o o] [o o] o o) [0©

o ol e o] fo o} [o o] Ho o} [0 @

o o) o o] fo o} o o] o o} [0 o] o o] jo O

o ol e o] lo o] [o o] o o] [o o] [o o] [o o} o o] o ©

Q0000100 |00 |00

o o} o o] fo o} [o ¢} o o} [o ¢} [o o] lo o] ko o] o ¢

o el le o] fo o} [o o} §o o] [o o] fo o] jo o] o o) lo.©

o o}l o ¢l o o} lo ¢} Jo @

o ol fo o} lo o} [o o] o o} [o ¢} [0 o] [0 ¢} N0 O] i O

o o} lo o} lo o} [o o] fo o} [o o] [0 o] lo o} ko O] o ¢

Frame buffer

Z buffer



o0 10O

o0 |1 00

o0 |00

o0

o0

§

oo

o o) fo o o o] lo @

o o] oo

o o) fo o] [o o] o o} lo ¢

-~
4

N

o o) o o] fo o] [o o] [o o] o o] [o o} lo o

o o} o o} [o o] o o} [o o] o o] jo o} lo o] o ¢

o ol o o] lo ol lo o} jo o} [o o] o o] lo o} fo o} [0 ¢

o0

OO0

o oo o} fo o) fo o] o o} [0 ¢

Frame buffer

Z buffer



o0

o0

. 3[8]2
3 [8[=[~[~|~|~|8]8]3
A BRI BRI R AR AR
Bl ||| 8|8|&
Bl | ]| B]|8|E
Gl lon|m|mw|ma|n || 888
LI R AR AR
S [=[=|=|=|=|=|—|8

OO

OO

Frame buffer

Z buffer



GLUT Callbacks

void display( void )

{
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER BIT );
glDrawArrays( GL_TRIANGLES, ©, NumVertices );
glutSwapBuffers();

}

void keyboard( unsigned char key, int x, int y )

{
switch( key ) {

case 033: case 'q': case 'Q':
exit( EXIT_SUCCESS );
break;



Double Buffering

vertical vertical vertical vertical Time
retrace retrace retrace retrace E—
1. Single- Video § draw § draw § draw § draw C
buffering | MeMory =§ A gl B B C g D
2. Double- Buffer § draw | . |&f draw | § draw | § draw | , F
buffering = A B 5 C 5 D
Vv W K 4 W
Video opy dopy dopy qopy
_memory A B C D

glutSwapBuffers()



How to compute the inner points

* Go through all horizontal pixel lines
(scan lines) from top to bottom P,

* Calculate pixel positions on the right
and left ends of each scan line by
interpolating between vertices P

* Calculate pixel positions on the scan
line C by interpolating between A
and B

Py

P



Linear Interpolation

—

* Given two vectors a, b,
linear interpolation is

defined by:
() =1 —t)d+th
where t € |0, 1]




Linear Interpolation

—

* Given two vectors a, b,
linear interpolation is

defined by:
() =1 —t)d+th
where t € |0, 1]




Linear Interpolation

—

* Given two vectors a, b,
linear interpolation is

defined by:
() =1 —t)d+th
where t € |0, 1]




Linear Interpolation

—

* Given two vectors a, b,
linear interpolation is

defined by:
() =1 —t)d+th
where t € |0, 1]




Linear Interpolation

* Geometric interpretation:
j)=(1—-t)d+th=d—td+th &
=a+t(b—a)

* For(0 <t < 1 this gives us all
possible positions on a line

between a and b




Interpolating between vertices P

XA, i+1 = XA, i — Axy
XB,i+1 — XB,i — Axg
YA, i+1 = YA,i — 1

VB i+1 =Yg i—1

Where

AxA — YA—Yo
Y2—Yo

AxB — YB—YV1




Calculating z

Using the vector formula for planes:
N r =s (N denotes plane normal)

Valuez,,is zj,1 = z; —

Where =X is constant

Ng

Nx
Ny



Normal vectors

* Normal vectors are oriented orthogonal
to a plane

* We can use the cross product to calculate
the value of the normal vector n

en=aXxX»hb

* Convention is to give the vectors in
opposite clock direction

n=V,-V)xX[V5-V;)

v,



CPU GPU

Y

Model

g NDC Space

Y

World -

Space @@ \

0 Window
Space

Y

o Camera
Space

gl Position

Render

Y

Clip Space




Polygon facing

* A polygon is front facing if
the normal of a plane is
oriented towards the
viewpoint, otherwise it is
back facing _\P .

front facing

back facing



Which triangles should be projected?

* Triangles that lie (partly) outside of the view
frustum don’t have to be projected and are
culled (clipping/culling)

=S



Which triangles should be projected?

* Triangles that lie (partly) outside of the view
frustum don’t have to be projected and are
culled (clipping/culling)

CULLING

/5,.




Which triangles should be projected?

* Triangles that lie (partly) outside of the view
frustum don’t have to be projected and are

culled (clipping/culling) A
=

CLIPPING




Which triangles should be projected?

* Triangles that lie (partly) outside of the view
frustum don’t have to be projected and are
culled (clipping/culling)

* The remaining triangles are projected on the
view plane




* Triangles that lie (partly) outside of the view A‘
frustum don’t have to be projected and are =
culled (clipping/culling)

* The remaining triangles are projected on the
view plane




Clipping

* To decide whether to clip a triangle we
have to:

* Test whether it intersects the hyperplane




Clipping

* To decide whether to clip a triangle we
have to:

e Test whether it intersects the
hyperplane

* Create new triangle(s)




Intersection test

* The hyperplane equation through a point
g and normal n is given by:

*fp)=n-(p—q)=0

.
a




3D —dot producta - b

Definition 1: a-b = a{by + a,b, + aszb;



3D —dot producta - b

Definition 1: a-b = a{by + a,b, + aszb;

Definition 2: a - b = |a| |b| cos(0)




Intersection test

* The hyperplane equation through a point
g and normal n is given by:

*fp)=n-(p—q)=0

.
a




Intersection test

* The hyperplane equation through a
point g and normal n is given by:

f(p)=n-(p—q) =0

e Convention: hyperplane normals are
oriented outwards (view frustum),
so if f(p) < 0 then p is inside, and if
f(p) > 0then p is outside the
plane.

.
a




Intersection test

* The hyperplane equation through a
point g and normal n is given by:

*fp)=n-(p—q)=0

e Convention: hyperplane normals are
oriented outwards (view frustum), so
if f(p) < 0then pisinside, and if
f(p) > 0then p is outside the
plane.

.
a

fla) <0



Intersection test

* The hyperplane equation through a
point g and normal n is given by:

*fp)=n-(p—q)=0

e Convention: hyperplane normals are
oriented outwards (view frustum), so
if f(p) < 0then pisinside, and if
f(p) > 0then p is outside the
plane.

.
a

fla) <0
F(b) >0



Intersection test

* The hyperplane equation through a
point g and normal n is given by:

*fp)=n-(p—q)=0

e Convention: hyperplane normals are
oriented outwards (view frustum), so
if f(p) < 0then pisinside, and if
f(p) > 0then p is outside the
plane.

.
a




Intersection test

* The hyperplane equation through a
point g and normal n is given by:

*fp)=n-(p—q)=0

e Convention: hyperplane normals are
oriented outwards (view frustum), so
if f(p) < 0then pisinside, and if
f(p) > 0then p is outside the
plane.

.
a

-



Calculating intersection points

* If two points a and b are on different sides
of a hyperplane we define the line that
passes through both points:

p®)=da+t(b-a)




Calculating intersection points

* If two points a and b are on different sides
of a hyperplane we define the line that
passes through both points:

p®)=da+t(b-a)
* Substituting:
A (-3 =0




Calculating intersection points

* If two points a and b are on different sides
of a hyperplane we define the line that
passes through both points:

p®)=da+t(b-a)

* Substituting:

ci (- =0
cii-(d+t(b-d) —4)=0




Calculating intersection points

* If two points a and b are on different sides
of a hyperplane we define the line that
passes through both points:

p®)=da+t(b-a)

* Substituting:
*n-(@—¢q)=0
cii-(d+t(b-d) —4)=0
+n-q

d-b)

31
Ql

ot:

S
~




Creating new triangles

* With two intersection points we can clip
triangles using a hyperplane:

* If two vertices are outside the hyperplane we
create a new triangle

* If one vertex is outside of the hyperplane we create
two new triangles




Creating new triangles

* But what if a triangle is clipped by two hyperplanes?




Creating new triangles

* First we clip according to the first hyperplane




Creating new triangles

* Then the second hyperplane




_ N R

Perspective
transform

Homogenization

X' /w

y'/w

z' [w

Rasterization

(1,1,—1)

(=1,-1,1)

(1, -1, —1)



Clipping after homogenization

* Simple equations for the hyperplanes:

0
0
0
0
0
0




Problem with the XY plane

f 1
Zp:n-|—f—7 - Zp"';

.




Clipping before homogenization

* Vertices of the view frustum can be obtained
from the transformation matrix M,

* Then we can deduce the equations of the
hyperplanes




Clipping in homogeneous coordi?ates
(x,y,2,1)

. o . |
* It turns out that clipping is most matrix multiplication

convenient in homogeneous coordinates. ¥
This means: we clip triangles in 4 (' 2 w')
dimensions using 3D hyperplanes. |

homogeneous divide

Y

5 !
> (%7 w7 w7 1)
|

rasterize

Y




(x,y,2,1)

Clipping in homogeneous coordi?ates

. o . |
* It turns out that clipping is most matrix multiplication

convenient in homogeneous coordinates. ¥
This means: we clip triangles in 4 (' 2 w')
dimensions using 3D hyperplanes. |

homogeneous divide

Y
_;z;f+[-1{': = 0 ' > (%%;—,1)
o —rw = 0 |
—y +bw = 0 rasterize
v —tw = 0 ) Y
—Z 4w’ = 0 9

2 —fuw = 0



CPU GPU

Y

Model

g NDC Space

Y

World -

Space @@ \

0 Window
Space

Y

o Camera
Space

gl Position

Render

Y

Clip Space




Camera frustum

A

£ |

&ye position

far pliine
OfBeplane

Projection

Sl apace

Normalized Device Coordinates (NDCQ)

Perspective
divide




Culling

* If a triangle lies outside of the view frustum
we remove it completely

* Testing vertices is costly... o
,/

—

-



Bounding volumes

* Using bounding volumes for complex
geometric objects accelerates the
rendering pipeline




Bounding volumes

* Spheres are often used BV

* If a plane is given by
c(F-d)7i=0
 And the sphere has center ¢ and
radius r, we test the inequality
| (-
Il

>r




Bounding volumes

* Spheres are often used BV

* If a plane is given by
c(F-d)7i=0
 And the sphere has center ¢ and
radius r, we test the inequality
| (-
Il

>r




Bounding volumes

* Spheres are often used BV

* If a plane is given by
c(F-d)7i=0
 And the sphere has center ¢ and
radius r, we test the inequality
| (-
Il

>r




Culling

* Frustum culling
removing triangle outside of the view
frustum

* Backface culling
removing triangles oriented away from
the camera




Backface culling

* If we model geometric objects with
triangles the normals are directed outside
of the object

* Removing triangles whose normals is
directed away from the view point we call
backface culling







ng

11 4

Er—»ne

B

V -

A\

> - - - Hpe—

b 4

np

nc


















VN = |v||n|COS(9)

n



<=

*v-n = |v||n|cos(8)

* Front facing if 8 > g, or cos(6) < 0 and
v-n<0

n



Algorithm  Back face culling

Require: Vertex co-ordinates of polygons and an viewpoint P
for all polygons in the virtual world do
calculate the normal vector n of the current polygon
calculate the centre (' of the current polygon
calculate the viewing vector v =C — P
if v.-n <0 then
render current polygon
end if
end for




All polygons backface culling



All polygons backface culling



Przyktad

No backface culling Backface culling



OpenGL culling

void glCullFace(GLenum mode);

GL_FRONT, GL_BACK

By default turned off.


https://www.khronos.org/opengl/wiki/GLAPI/glCullFace

CPU GPU

Y

Model

g NDC Space

Y

World -

Space @@ \

0 Window
Space

Y

o Camera
Space

gl Position

Render

Y

Clip Space




CPU GPU

atiribate 0
Attribute 1

A / Vertex shader
NDC Space

Model
Space

World

Space

A
@
S
&)

+| Camera
Space

gl Position

Render

Y

Clip Space




