
GRK 4

Dr W Palubicki

Perspective projection

• What is perspective?

• The size of an object is proportional to its distance from the
viewpoint.

Perspective Math

𝑀

𝑥
𝑦
𝑧
1

=

𝑥𝑝
𝑦𝑝
𝑧
1

=

𝑛𝑥

𝑧
𝑛𝑦

𝑧
𝑧
1

՜
𝑒

View plane

𝑦𝑝

𝑦

𝑧

𝑑

՜
𝑔

Homogeneous coordinates
• In homogeneous coordinates

(x, y, z, 1) represents the point (x, y, z)

Additionally, we now allow other points

(x, y, z, w) which specify the points (
𝒙

𝒘
,
𝒚

𝒘
,
𝒛

𝒘
)

homogeneous cartesian

Matrix P

𝑛 0
0 𝑛

0 0
0 0

0 0
0 0

𝑛 + 𝑓 −𝑛𝑓
1 0

𝑥
𝑦
𝑧
1

=

𝑛𝑥

𝑧
𝑛𝑦

𝑧

𝑛 + 𝑓 −
𝑛𝑓

𝑧
1

Perspective transformation matrix

• Our final perspective transformation matrix
𝑀𝑝𝑒𝑟𝑠 is then

• 𝑀𝑝𝑒𝑟 = 𝑀𝑜𝑟𝑡ℎ𝑃 = 𝑀𝑜𝑟𝑡ℎ

𝑛 0
0 𝑛

0 0
0 0

0 0
0 0

𝑛 + 𝑓 −𝑛𝑓
1 0

=

2𝑛

𝑟−𝑙

0

0
2𝑛

𝑡−𝑏

0
0

0
0

𝑙+𝑟

𝑙−𝑟
𝑏+𝑡

𝑏−𝑡

0
0

𝑓+𝑛

𝑛−𝑓

1

2𝑓𝑛

𝑓−𝑛

0

Rendering pipeline

• Rendering pipeline with
orthographic projection:

• 𝑀𝑣𝑝𝑀𝑜𝑟𝑡𝑀𝑐𝑎𝑚

𝑥
𝑦
𝑧
1

• Rendering pipeline with
perspective projection:

• 𝑀𝑣𝑝𝑀𝑝𝑒𝑟𝑀𝑐𝑎𝑚

𝑥
𝑦
𝑧
1

Drawing on the Display

• The following pseudo-code
illustrates how to draw a line
between two points a and b

compute Mvp
compute Mper
compute Mcam
M = Mvp Mper Mcam

for each line segment (a, b) do
p = M a
q = M b
drawline(px/pw, py/pw, qx/qw, qy/qw)

Drawing Order Problem

Why?

՜
𝑒

view plane far plane

Both points projected to the same position

Painter’s algorithm

Painter’s algorithm

• Algorithm draws polygons in relation to
distance from camera

• Smallest coordinate zs of all polygons is used
to determine the distance

• Closer polygons are drawn on top of further
ones

Example

Partial polygon overlay

z-buffer / depth buffer
• Z-buffer algorithm is similar to painter’s algorithm

but at the scale of pixels
• Two buffers (arrays) are created where each pixel

corresponds to one lement of the array
• depth buffer stores distance z from the nearest

surface in world space for each pixel
• frame buffer stores indices of polygons (to later

on select corresponding colors)

z-buffer / depth buffer

Z-bufor przyklad

GLUT Callbacks
void display(void)
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glDrawArrays(GL_TRIANGLES, 0, NumVertices);
glutSwapBuffers();

}

void keyboard(unsigned char key, int x, int y)
{

switch(key) {
case 033: case 'q': case 'Q':

exit(EXIT_SUCCESS);
break;

}
}

Double Buffering

glutSwapBuffers()

How to compute the inner points

• Go through all horizontal pixel lines
(scan lines) from top to bottom

• Calculate pixel positions on the right
and left ends of each scan line by
interpolating between vertices P

• Calculate pixel positions on the scan
line C by interpolating between A
and B

Linear Interpolation

• Given two vectors Ԧ𝑎, 𝑏,
linear interpolation is
defined by:

Ԧ𝑝 𝑡 = 1 − 𝑡 Ԧ𝑎 + 𝑡𝑏

where 𝑡 ∈ [0, 1]

Ԧ𝑎

𝑏

Linear Interpolation

• Given two vectors Ԧ𝑎, 𝑏,
linear interpolation is
defined by:

Ԧ𝑝 𝑡 = 1 − 𝑡 Ԧ𝑎 + 𝑡𝑏

where 𝑡 ∈ [0, 1]

Ԧ𝑎

𝑏

𝑡 𝑏

Linear Interpolation

• Given two vectors Ԧ𝑎, 𝑏,
linear interpolation is
defined by:

Ԧ𝑝 𝑡 = 1 − 𝑡 Ԧ𝑎 + 𝑡𝑏

where 𝑡 ∈ [0, 1]

Ԧ𝑎

𝑏

1 − 𝑡 Ԧ𝑎
𝑡 𝑏

Linear Interpolation

• Given two vectors Ԧ𝑎, 𝑏,
linear interpolation is
defined by:

Ԧ𝑝 𝑡 = 1 − 𝑡 Ԧ𝑎 + 𝑡𝑏

where 𝑡 ∈ [0, 1]

Ԧ𝑎

𝑏
Ԧ𝑝(𝑡)

1 − 𝑡 Ԧ𝑎
𝑡 𝑏

Linear Interpolation

• Geometric interpretation:

Ԧ𝑝 𝑡 = 1 − 𝑡 Ԧ𝑎 + 𝑡𝑏 = Ԧ𝑎 − 𝑡 Ԧ𝑎 + 𝑡𝑏

= Ԧ𝑎 + 𝑡(𝑏 − Ԧ𝑎)

• For 0 ≤ 𝑡 ≤ 1 this gives us all
possible positions on a line
between Ԧ𝑎 and 𝑏

Ԧ𝑎

𝑏

Interpolating between vertices P

• 𝑥𝐴, 𝑖+1 = 𝑥𝐴, 𝑖 − ∆𝑥𝐴

• 𝑥𝐵, 𝑖+1 = 𝑥𝐵, 𝑖 − ∆𝑥𝐵

• 𝑦𝐴, 𝑖+1 = 𝑦𝐴, 𝑖 − 1

• 𝑦𝐵, 𝑖+1 = 𝑦𝐵, 𝑖 − 1

• Where

• ∆𝑥𝐴 =
𝑦𝐴−𝑦0

𝑦2−𝑦0

• ∆𝑥𝐵 =
𝑦𝐵−𝑦1

𝑦2−𝑦1

Calculating z

• Using the vector formula for planes:

• N r = s (N denotes plane normal)

• Value zi+1 is 𝑧𝑖+1 = 𝑧𝑖 −
𝑛𝑥

𝑛𝑧

• Where
𝑛𝑥

𝑛𝑧
is constant

Normal vectors

• Normal vectors are oriented orthogonal
to a plane

• We can use the cross product to calculate
the value of the normal vector n

• 𝑛 = 𝑎 × 𝑏

• Convention is to give the vectors in
opposite clock direction

• 𝑛 = (𝑉2 − 𝑉1) × (𝑉3 − 𝑉2)

GPUCPU

Polygon facing

• A polygon is front facing if
the normal of a plane is
oriented towards the
viewpoint, otherwise it is
back facing

Which triangles should be projected?

• Triangles that lie (partly) outside of the view
frustum don’t have to be projected and are
culled (clipping/culling)

Which triangles should be projected?

• Triangles that lie (partly) outside of the view
frustum don’t have to be projected and are
culled (clipping/culling)

CULLING

Which triangles should be projected?

• Triangles that lie (partly) outside of the view
frustum don’t have to be projected and are
culled (clipping/culling)

CLIPPING

Which triangles should be projected?

• Triangles that lie (partly) outside of the view
frustum don’t have to be projected and are
culled (clipping/culling)

• The remaining triangles are projected on the
view plane

• Triangles that lie (partly) outside of the view
frustum don’t have to be projected and are
culled (clipping/culling)

• The remaining triangles are projected on the
view plane

Clipping

• To decide whether to clip a triangle we
have to:
• Test whether it intersects the hyperplane

• Stworzyć nowy trójkąt(y)

Clipping

• To decide whether to clip a triangle we
have to:
• Test whether it intersects the

hyperplaneorzyć nowy trójkąt(y)

• Create new triangle(s)

Intersection test

• The hyperplane equation through a point
q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Konwencja: normalne naszych
hiperpłaszczyzna są z kierowane na
zewnątrz (bryły widzenia), czyli gdy
𝑓 𝑝 < 0 to 𝑝 jest wewnątrz, a jak
𝑓 𝑝 > 0 to 𝑝 jest zewnątrz płaszczyzny.

3D – dot product 𝑎 ∙ 𝑏

Definition 1: 𝑎 ∙ 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3

3D – dot product 𝑎 ∙ 𝑏

Definition 1: 𝑎 ∙ 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3

Definition 2: 𝑎 ∙ 𝑏 = 𝑎 𝑏 cos(𝜃)

Intersection test

• The hyperplane equation through a point
q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Konwencja: normalne naszych
hiperpłaszczyzna są z kierowane na
zewnątrz (bryły widzenia), czyli gdy
𝑓 𝑝 < 0 to 𝑝 jest wewnątrz, a jak
𝑓 𝑝 > 0 to 𝑝 jest zewnątrz płaszczyzny.

Intersection test

• The hyperplane equation through a
point q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Convention: hyperplane normals are
oriented outwards (view frustum),
so if 𝑓 𝑝 < 0 then 𝑝 is inside, and if
𝑓 𝑝 > 0 then 𝑝 is outside the
plane.

Intersection test

• The hyperplane equation through a
point q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Convention: hyperplane normals are
oriented outwards (view frustum), so
if 𝑓 𝑝 < 0 then 𝑝 is inside, and if
𝑓 𝑝 > 0 then 𝑝 is outside the
plane.

Intersection test

• The hyperplane equation through a
point q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Convention: hyperplane normals are
oriented outwards (view frustum), so
if 𝑓 𝑝 < 0 then 𝑝 is inside, and if
𝑓 𝑝 > 0 then 𝑝 is outside the
plane.

Intersection test

• The hyperplane equation through a
point q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Convention: hyperplane normals are
oriented outwards (view frustum), so
if 𝑓 𝑝 < 0 then 𝑝 is inside, and if
𝑓 𝑝 > 0 then 𝑝 is outside the
plane.

Intersection test

• The hyperplane equation through a
point q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Convention: hyperplane normals are
oriented outwards (view frustum), so
if 𝑓 𝑝 < 0 then 𝑝 is inside, and if
𝑓 𝑝 > 0 then 𝑝 is outside the
plane.

Calculating intersection points

• If two points Ԧ𝑎 and 𝑏 are on different sides
of a hyperplane we define the line that
passes through both points:

• Ԧ𝑝 𝑡 = Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎

• Substituting:

• 𝑛 ∙ Ԧ𝑝 − Ԧ𝑞 = 0

• 𝑛 ∙ Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎 − Ԧ𝑞 = 0

• 𝑡 =
𝑛∙𝑎+𝑛∙𝑞

𝑛∙(𝑎−𝑏)

Calculating intersection points

• If two points Ԧ𝑎 and 𝑏 are on different sides
of a hyperplane we define the line that
passes through both points:

• Ԧ𝑝 𝑡 = Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎

• Substituting:

• 𝑛 ∙ Ԧ𝑝 − Ԧ𝑞 = 0

• 𝑛 ∙ Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎 − Ԧ𝑞 = 0

• 𝑡 =
𝑛∙𝑎+𝑛∙𝑞

𝑛∙(𝑎−𝑏)

Calculating intersection points

• If two points Ԧ𝑎 and 𝑏 are on different sides
of a hyperplane we define the line that
passes through both points:

• Ԧ𝑝 𝑡 = Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎

• Substituting:

• 𝑛 ∙ Ԧ𝑝 − Ԧ𝑞 = 0

• 𝑛 ∙ Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎 − Ԧ𝑞 = 0

• 𝑡 =
𝑛∙𝑎+𝑛∙𝑞

𝑛∙(𝑎−𝑏)

Calculating intersection points

• If two points Ԧ𝑎 and 𝑏 are on different sides
of a hyperplane we define the line that
passes through both points:

• Ԧ𝑝 𝑡 = Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎

• Substituting:

• 𝑛 ∙ Ԧ𝑝 − Ԧ𝑞 = 0

• 𝑛 ∙ Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎 − Ԧ𝑞 = 0

• 𝑡 =
𝑛∙𝑎+𝑛∙𝑞

𝑛∙(𝑎−𝑏)

Creating new triangles

• With two intersection points we can clip
triangles using a hyperplane:
• If two vertices are outside the hyperplane we

create a new triangle

• If one vertex is outside of the hyperplane we create
two new triangles

Creating new triangles

• But what if a triangle is clipped by two hyperplanes?

Creating new triangles

• First we clip according to the first hyperplane

Creating new triangles

• Then the second hyperplane

Perspective
transform

Homogenization Rasterization

𝑥
𝑦
𝑧
1

𝑥′
𝑦′

𝑧′
𝑤

𝑥′/𝑤

𝑦′/𝑤

𝑧′/𝑤
1

Clipping after homogenization

• Simple equations for the hyperplanes:

Problem with the XY plane

𝑧𝑝~
1

𝑧
𝑧𝑝 = 𝑛 + 𝑓 −

𝑓𝑛

𝑧
՜

z

𝑧𝑝

Clipping before homogenization

• Vertices of the view frustum can be obtained
from the transformation matrix 𝑀𝑝𝑒𝑟

-1

• Then we can deduce the equations of the
hyperplanes

Clipping in homogeneous coordinates

• It turns out that clipping is most
convenient in homogeneous coordinates.
This means: we clip triangles in 4
dimensions using 3D hyperplanes.

Clipping in homogeneous coordinates

• It turns out that clipping is most
convenient in homogeneous coordinates.
This means: we clip triangles in 4
dimensions using 3D hyperplanes.

GPUCPU

Culling

• If a triangle lies outside of the view frustum
we remove it completely

• Testing vertices is costly…

Bounding volumes

• Using bounding volumes for complex
geometric objects accelerates the
rendering pipeline

Bounding volumes

• Spheres are often used BV

• If a plane is given by

• Ԧ𝑝 − Ԧ𝑎 ∙ 𝑛 = 0

• And the sphere has center Ԧ𝑐 and
radius r, we test the inequality

•
Ԧ𝑐−𝑎 ∙𝑛

𝑛
> 𝑟

Bounding volumes

Ԧ𝑐

Ԧ𝑎

𝑛

r

• Spheres are often used BV

• If a plane is given by

• Ԧ𝑝 − Ԧ𝑎 ∙ 𝑛 = 0

• And the sphere has center Ԧ𝑐 and
radius r, we test the inequality

•
Ԧ𝑐−𝑎 ∙𝑛

𝑛
> 𝑟

Bounding volumes

Ԧ𝑐

Ԧ𝑎

𝑛

r

• Spheres are often used BV

• If a plane is given by

• Ԧ𝑝 − Ԧ𝑎 ∙ 𝑛 = 0

• And the sphere has center Ԧ𝑐 and
radius r, we test the inequality

•
Ԧ𝑐−𝑎 ∙𝑛

𝑛
> 𝑟

Culling

• Frustum culling
removing triangle outside of the view
frustum

• Backface culling
removing triangles oriented away from
the camera

Backface culling

• If we model geometric objects with
triangles the normals are directed outside
of the object

• Removing triangles whose normals is
directed away from the view point we call
backface culling

• 𝒗 ∙ 𝒏 = 𝒗 𝒏 cos(𝜃)

• Skierowany do przodu gdy 𝜃 >
𝜋

2
, dlatego cos 𝜃 < 0 i

𝒗 ∙ 𝒏 < 0

• 𝒗 ∙ 𝒏 = 𝒗 𝒏 cos(𝜃)

• Front facing if 𝜃 >
𝜋

2
, or cos 𝜃 < 0 and

𝒗 ∙ 𝒏 < 0

All polygons backface culling

All polygons backface culling

Przykład

No backface culling Backface culling

OpenGL culling

void glCullFace(GLenum mode);

GL_FRONT, GL_BACK

By default turned off.

https://www.khronos.org/opengl/wiki/GLAPI/glCullFace

GPUCPU

Vertex shader

Fragment shader

GPUCPU

