
GRK 4

Dr W Palubicki



Perspective projection

• What is perspective?

• The size of an object is proportional to its distance from the 
viewpoint.
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Homogeneous coordinates
• In homogeneous coordinates

(x, y, z, 1) represents the point (x, y, z) 

Additionally, we now allow other points

(x, y, z, w) which specify the points (
𝒙

𝒘
,
𝒚

𝒘
,
𝒛

𝒘
)

homogeneous cartesian
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Perspective transformation matrix

• Our final perspective transformation matrix 
𝑀𝑝𝑒𝑟𝑠 is then

• 𝑀𝑝𝑒𝑟 = 𝑀𝑜𝑟𝑡ℎ𝑃 = 𝑀𝑜𝑟𝑡ℎ
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Rendering pipeline

• Rendering pipeline with
orthographic projection: 

• 𝑀𝑣𝑝𝑀𝑜𝑟𝑡𝑀𝑐𝑎𝑚
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• Rendering pipeline with 
perspective projection: 

• 𝑀𝑣𝑝𝑀𝑝𝑒𝑟𝑀𝑐𝑎𝑚
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Drawing on the Display

• The following pseudo-code 
illustrates how to draw a line 
between two points a and b

compute Mvp
compute Mper
compute Mcam
M = Mvp Mper Mcam

for each line segment (a, b) do
p = M a
q = M b
drawline(px/pw, py/pw, qx/qw, qy/qw)



Drawing Order Problem



Why?
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view plane far plane

Both points projected to the same position



Painter’s algorithm



Painter’s algorithm

• Algorithm draws polygons in relation to 
distance from camera

• Smallest coordinate zs of all polygons is used 
to determine the distance

• Closer polygons are drawn on top of further 
ones



Example



Partial polygon overlay



z-buffer / depth buffer
• Z-buffer algorithm is similar to painter’s algorithm 

but at the scale of pixels
• Two buffers (arrays) are created where each pixel 

corresponds to one lement of the array
• depth buffer stores distance z from the nearest 

surface in world space for each pixel
• frame buffer stores indices of polygons (to later 

on select corresponding colors)



z-buffer / depth buffer





Z-bufor przyklad





GLUT Callbacks
void display( void )
{

glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glDrawArrays( GL_TRIANGLES, 0, NumVertices );
glutSwapBuffers();

}

void keyboard( unsigned char key, int x, int y ) 
{

switch( key ) {
case 033: case 'q': case 'Q':

exit( EXIT_SUCCESS );
break;

}
}



Double Buffering

glutSwapBuffers()



How to compute the inner points

• Go through all horizontal pixel lines
(scan lines) from top to bottom

• Calculate pixel positions on the right 
and left ends of each scan line by 
interpolating between vertices P

• Calculate pixel positions on the scan 
line C by interpolating between A 
and B



Linear Interpolation

• Given two vectors Ԧ𝑎, 𝑏, 
linear interpolation is 
defined by:

Ԧ𝑝 𝑡 = 1 − 𝑡 Ԧ𝑎 + 𝑡𝑏

where 𝑡 ∈ [0, 1]
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Linear Interpolation

• Given two vectors Ԧ𝑎, 𝑏, 
linear interpolation is 
defined by:

Ԧ𝑝 𝑡 = 1 − 𝑡 Ԧ𝑎 + 𝑡𝑏

where 𝑡 ∈ [0, 1]
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Linear Interpolation

• Given two vectors Ԧ𝑎, 𝑏, 
linear interpolation is 
defined by:

Ԧ𝑝 𝑡 = 1 − 𝑡 Ԧ𝑎 + 𝑡𝑏

where 𝑡 ∈ [0, 1]
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Linear Interpolation

• Given two vectors Ԧ𝑎, 𝑏, 
linear interpolation is 
defined by:

Ԧ𝑝 𝑡 = 1 − 𝑡 Ԧ𝑎 + 𝑡𝑏

where 𝑡 ∈ [0, 1]
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Linear Interpolation

• Geometric interpretation:

Ԧ𝑝 𝑡 = 1 − 𝑡 Ԧ𝑎 + 𝑡𝑏 = Ԧ𝑎 − 𝑡 Ԧ𝑎 + 𝑡𝑏

= Ԧ𝑎 + 𝑡(𝑏 − Ԧ𝑎)

• For 0 ≤ 𝑡 ≤ 1 this gives us all 
possible positions on a line 
between Ԧ𝑎 and 𝑏

Ԧ𝑎

𝑏



Interpolating between vertices P

• 𝑥𝐴, 𝑖+1 = 𝑥𝐴, 𝑖 − ∆𝑥𝐴

• 𝑥𝐵, 𝑖+1 = 𝑥𝐵, 𝑖 − ∆𝑥𝐵

• 𝑦𝐴, 𝑖+1 = 𝑦𝐴, 𝑖 − 1

• 𝑦𝐵, 𝑖+1 = 𝑦𝐵, 𝑖 − 1

• Where

• ∆𝑥𝐴 =
𝑦𝐴−𝑦0

𝑦2−𝑦0

• ∆𝑥𝐵 =
𝑦𝐵−𝑦1

𝑦2−𝑦1



Calculating z

• Using the vector formula for planes:

• N r = s (N denotes plane normal)

• Value zi+1 is 𝑧𝑖+1 = 𝑧𝑖 −
𝑛𝑥

𝑛𝑧

• Where 
𝑛𝑥

𝑛𝑧
is constant



Normal vectors

• Normal vectors are oriented orthogonal
to a plane

• We can use the cross product to calculate 
the value of the normal vector n

• 𝑛 = 𝑎 × 𝑏

• Convention is to give the vectors in 
opposite clock direction

• 𝑛 = (𝑉2 − 𝑉1) × (𝑉3 − 𝑉2)



GPUCPU



Polygon facing

• A polygon is front facing if 
the normal of a plane is 
oriented towards the 
viewpoint, otherwise it is 
back facing



Which triangles should be projected?

• Triangles that lie (partly) outside of the view 
frustum don’t have to be projected and are 
culled (clipping/culling)



Which triangles should be projected?
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CULLING



Which triangles should be projected?

• Triangles that lie (partly) outside of the view 
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CLIPPING



Which triangles should be projected?

• Triangles that lie (partly) outside of the view 
frustum don’t have to be projected and are 
culled (clipping/culling)

• The remaining triangles are projected on the 
view plane



• Triangles that lie (partly) outside of the view 
frustum don’t have to be projected and are 
culled (clipping/culling)

• The remaining triangles are projected on the 
view plane



Clipping

• To decide whether to clip a triangle we 
have to:
• Test whether it intersects the hyperplane

• Stworzyć nowy trójkąt(y)



Clipping

• To decide whether to clip a triangle we 
have to:
• Test whether it intersects the 

hyperplaneorzyć nowy trójkąt(y)

• Create new triangle(s)



Intersection test

• The hyperplane equation through a point 
q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Konwencja: normalne naszych 
hiperpłaszczyzna są z kierowane na 
zewnątrz (bryły widzenia), czyli gdy 
𝑓 𝑝 < 0 to 𝑝 jest wewnątrz, a jak 
𝑓 𝑝 > 0 to 𝑝 jest zewnątrz płaszczyzny. 



3D – dot product 𝑎 ∙ 𝑏

Definition 1: 𝑎 ∙ 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3



3D – dot product 𝑎 ∙ 𝑏

Definition 1: 𝑎 ∙ 𝑏 = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3

Definition 2: 𝑎 ∙ 𝑏 = 𝑎 𝑏 cos(𝜃)



Intersection test

• The hyperplane equation through a point 
q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Konwencja: normalne naszych 
hiperpłaszczyzna są z kierowane na 
zewnątrz (bryły widzenia), czyli gdy 
𝑓 𝑝 < 0 to 𝑝 jest wewnątrz, a jak 
𝑓 𝑝 > 0 to 𝑝 jest zewnątrz płaszczyzny. 



Intersection test

• The hyperplane equation through a 
point q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Convention: hyperplane normals are 
oriented outwards (view frustum), 
so if 𝑓 𝑝 < 0 then 𝑝 is inside, and if
𝑓 𝑝 > 0 then 𝑝 is outside the 
plane. 
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Intersection test

• The hyperplane equation through a 
point q and normal n is given by:

• 𝑓 𝑝 = 𝑛 ∙ 𝑝 − 𝑞 = 0

• Convention: hyperplane normals are 
oriented outwards (view frustum), so 
if 𝑓 𝑝 < 0 then 𝑝 is inside, and if
𝑓 𝑝 > 0 then 𝑝 is outside the
plane. 



Calculating intersection points

• If two points Ԧ𝑎 and 𝑏 are on different sides 
of a hyperplane we define the line that 
passes through both points:

• Ԧ𝑝 𝑡 = Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎

• Substituting:

• 𝑛 ∙ Ԧ𝑝 − Ԧ𝑞 = 0

• 𝑛 ∙ Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎 − Ԧ𝑞 = 0

• 𝑡 =
𝑛∙𝑎+𝑛∙𝑞

𝑛∙(𝑎−𝑏)



Calculating intersection points
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Calculating intersection points
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Calculating intersection points

• If two points Ԧ𝑎 and 𝑏 are on different sides 
of a hyperplane we define the line that 
passes through both points:

• Ԧ𝑝 𝑡 = Ԧ𝑎 + 𝑡 𝑏 − Ԧ𝑎

• Substituting:

• 𝑛 ∙ Ԧ𝑝 − Ԧ𝑞 = 0
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𝑛∙𝑎+𝑛∙𝑞
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Creating new triangles

• With two intersection points we can clip 
triangles using a hyperplane:
• If two vertices are outside the hyperplane we 

create a new triangle

• If one vertex is outside of the hyperplane we create
two new triangles



Creating new triangles

• But what if a triangle is clipped by two hyperplanes?



Creating new triangles

• First we clip according to the first hyperplane



Creating new triangles

• Then the second hyperplane



Perspective 
transform

Homogenization Rasterization
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Clipping after homogenization

• Simple equations for the hyperplanes:



Problem with the XY plane

𝑧𝑝~
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𝑧
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Clipping before homogenization

• Vertices of the view frustum can be obtained 
from the transformation matrix 𝑀𝑝𝑒𝑟

-1

• Then we can deduce the equations of the 
hyperplanes



Clipping in homogeneous coordinates

• It turns out that clipping is most 
convenient in homogeneous coordinates. 
This means: we clip triangles in 4 
dimensions using 3D hyperplanes.



Clipping in homogeneous coordinates

• It turns out that clipping is most 
convenient in homogeneous coordinates. 
This means: we clip triangles in 4 
dimensions using 3D hyperplanes.



GPUCPU





Culling

• If a triangle lies outside of the view frustum
we remove it completely

• Testing vertices is costly…



Bounding volumes

• Using bounding volumes for complex 
geometric objects accelerates the 
rendering pipeline



Bounding volumes

• Spheres are often used BV

• If a plane is given by

• Ԧ𝑝 − Ԧ𝑎 ∙ 𝑛 = 0

• And the sphere has center Ԧ𝑐 and 
radius r, we test the inequality

•
Ԧ𝑐−𝑎 ∙𝑛

𝑛
> 𝑟



Bounding volumes
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Bounding volumes
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Culling

• Frustum culling
removing triangle outside of the view 
frustum

• Backface culling
removing triangles oriented away from 
the camera



Backface culling

• If we model geometric objects with 
triangles the normals are directed outside
of the object

• Removing triangles whose normals is 
directed away from the view point we call
backface culling

















• 𝒗 ∙ 𝒏 = 𝒗 𝒏 cos(𝜃)

• Skierowany do przodu gdy 𝜃 >
𝜋

2
, dlatego cos 𝜃 < 0 i 

𝒗 ∙ 𝒏 < 0



• 𝒗 ∙ 𝒏 = 𝒗 𝒏 cos(𝜃)

• Front facing if 𝜃 >
𝜋

2
, or cos 𝜃 < 0 and

𝒗 ∙ 𝒏 < 0





All polygons backface culling



All polygons backface culling



Przykład

No backface culling Backface culling



OpenGL culling

void glCullFace(GLenum mode);

GL_FRONT, GL_BACK

By default turned off.

https://www.khronos.org/opengl/wiki/GLAPI/glCullFace


GPUCPU



Vertex shader

Fragment shader

GPUCPU


