GRK 5

dr Wojciech Palubicki

Simplified Rendering Pipeline

Model Matrix View Matrix Projection Matrix Viewport Transform

» > >

N

|

>
ALY ‘

. A

Object Space World Space View Space Clip Space Screen Space

Drawing on the Display

* The following pseudo-code

illustrates how to draw a line compute M,
. compute M.
between two pointsaand b compute M.

M = lvlvp Mper‘ IVIcam

for each line segment (a, b) do
p=Ma
q=M»Db
drawline(p,/p,, P,/P., dx/qw, 9dy,/9du)

Drawing Order Problem

Painter’s algorithm

A,

Painter’s algorithm

* Algorithm draws polygons in relation to distance from camera

* Smallest coordinate z_ of all polygons is used to determine the
distance

* Closer polygons are drawn on top of further ones

Partial polygon overlay

z-buffer / depth buffer

e 7Z-buffer algorithm is similar to painter’s algorithm but at the scale of
pixels

* Two buffers (arrays) are created where each pixel corresponds to one
element of the array

» depth buffer stores distance z from the nearest surface in world
space for each pixel

* frame buffer stores indices of polygons (to later on select
corresponding colors)

z-buffer / depth buffer

Algorithm 1 Z buffer

Require: a set of polygons P, a depth buffer array Z and a frame buffer array F
initialise Z to z,,.x
for all polygons in PP do
for all pixels in the current polygon do
calculate the = co-ordinate of the point corresponding to the current pixel
if - < Z(x.y) then
Replace Z(x. y) with =
Replace F'(x.y) with the colour of the current polygon
end if
end for
end for
Display I on screen

o | OO

OO 100100 |00

o0 OO |00

o oo o}l o o} [0 o} o o] fo o] o o) lo o} o o] o0&

OO OO0 |1OO |00 |00

o oo o}l lo o} lo o} o o] ko o] fo o] lo o} lo o] lo &

e ol lo o} o o] lo o} jo o] [o o] [o o] fo o] [o o} [0

o o}l lo o] fo o] Lo o} jo o] lo o] [o o] ko o] ko O]} ko &

o el o} o ojle o} §o o] [o o] o o] jo o] o o} [0 ¢

OO OO |00 100 | OC

OO |00 IO ICQ OO OO 00|00 00|00

o ol o o] o ol lo o} jo o} o o} lo o] fo o] o O} lo. O

Frame buffer

Z buffer

OO | OO

o0 | OO

o0 |00

OO 10O

OO OO

o0

o0

O

o0

o o} o o} o o] [0 ©

OO 100100 00

O OO

5

OO OO 100 OO |00

I

-~
.- »

-
- -

.\I,
A

N

o o) fo o] o o] ko o] o o] lo o} fo o} o ©

o0

OO IOO OO 00|00 |00 |00

o0

OO

o o} o o] jo o} o o} §o o} [o ¢

Frame buffer

Z buffer

o0

2l8[8]8]8]2]8][2]8]3
g [8[=[=[=]=]=[8]8]2
xrn/_n/_n}_n}_n/_xxx
S lelwl=lwlelelglgla
X |n || BB | &
HMERIBIBIGIGIGIREAR AR
= | ===~ |~|—]8
2

o0

OO

X))

Frame buffer

Z buffer

Interpolating between vertices P

* Loop through horizontal rows of pixels
(scan lines) from top to bottom

* Calculate pixels on the left and right of
scan line A and B by interpolation

* Calculate the pixels on the scan line by
interpolating between A and B A

Clipping/Culling

* Triangles that lie (partly) outside of the view
frustum don’t have to be projected and are
culled (clipping/culling)

* The remaining triangles are projected on the
view plane

Lighting

Without lighting

Lighting

Without lighting With lighting

Light

* Non-metal material
* A portion of light is reflected
* Another portion enters the material

 Metal

* A portion of light is reflected
* Another portion is absorbed

Non-metal materials

* Light that is entering the material
* |s absorbed
* Or re-emitted after a while

Subsurface scattering

* The distance between entry and exit points of light rays is specified by
the material

Modeling Light with BRDF's

* BRDF stands for Bidirectional Reflectance Distribution Function

 BRDF’s are modeling light by ignoring the difference between entry and exit
points of a material

specularO

observer

direct lighting

light source

observer

\\object

direct lighting indirect lighting

object object\\

light source light source

observer

N\

\ndirect lighting

: =

objéct 77

direct lighting

light source lightSgurce

Observation

dL

plane

Observation

dL

ﬁ plane

dA

Observation

dL=dA

dL

ﬁ plane

dA

Observation

dL =dA dL > dA

dL d

dA dA

Observation

dL=dA

dL

dA

dL > dA

dA

dL > dA

/
e

dA

Observation

dL=dA

dL

dA

dL > dA

dA

dL > dA

/
e

dA

dL =00

dA

Phong model of diffuse lighting

Phong model of diffuse lighting

Phong model of diffuse lighting

Phong model of diffuse lighting

Phong model of diffuse lighting

* Phong model of diffuse lighting depends on the position of the light
source relative to the object surface

* D = I,,k; max[cos(0), 0]

Phong model of diffuse lighting

* Phong model of diffuse lighting depends on the position of the light
source relative to the object surface

* D = I,,k; max[cos(0), 0]

* Where
* [, is the light intensity of the light source
* kg €[0,1] is a diffuse lighting coefficient
* O is the angle between L and the normal of the object surface n

Phong model of diffuse lighting

* Phong model of diffuse lighting depends on the position of the light
source relative to the object surface

* D = I,,k; max[cos(0), 0]

* Where
* [, is the light intensity of the light source
* kg €[0,1] is a diffuse lighting coefficient
* O is the angle between L and the normal of the object surface n

* Function max[cos(8), 0] is used so that light is not reflected when
the light source is behind the object surface

ky=0.25 ky=0.5

ky = 0.75

* Dot product between two vectors:
*a-b=|al|b|cos(0)

* However if the vectors are of unit length: 7\
>

* L-n= cos(0)

b

* Dot product between two vectors:
*a-b=|al|b|cos(0)

* However if the vectors are of unit length:
* L-n = cos(0)

* We can substitute the costly cosine
calculation with the dot product

* D =I,kg max[L-n,0]

b

Light reflection

Incoming light rays Reflected light rays

000

AVAVAVEA

Specular lighting - vectors

O, R

Vector projection

» b

Vector projection

» b

Vector projection

» b

S v i o

» b

o) A,

* From the definition of the dot product:

*a-'b =|al|lb|cos(a)

» b

o) A,

* From the definition of the dot product:

*a-b=|al|b|cos(a) = |al||b| =

» b

o) A,

o) A,

» b

*a-b=|al|b|cos(a) = |al||b| = = |b]]|c|

a-b

e |c| = —
el =,

» b

o) A,

*a-b=|al|b|cos(a) = |al||b| = = |b]]|c|

ab
14
* If b is a unit vector |c| = a * b then

e c=(a'b)b

*] =

1

(L-n)n

7

(L-n)n

(L-n)n

(L-n)n

(L-n)n

L+R=2(L-n)n

> =

(L-n)n

> =

(L-n)n

GLSL

Name
reflect — calculate the reflection direction for an incident vector

r = reflect(l, n)

Declaration

genType reflect(genType I,
genType N) ;

genDType reflect(genDType I,
genDType N) ;

Parameters

1

Specifies the incident vector.

Specifies the normal vector.

Specular lighting - vectors

* The Phong model of specular lighting
IS:

* S = Lkscos™(a) = Lkg(V-R)" A

v

/iiiiiiiiiiiiiiiiiiiiiiiiiiiiilil’iéiiii’cccéd2édz

Specular lighting - vectors

* The Phong model of specular lighting
IS:

* S = Lkscos™(a) = Lkg(V-R)"

* Where
* k; €]0,1] is the specular lighting
coefficient
* nis the specular lighting exponent

* a is the angle between R and V

v

/44

Specular lighting - vectors

* The Phong model of specular lighting
IS:

* S = ILkscos™(a) = L,ks(V - R)" A

* Where Q

* k; €]0,1] is the specular lighting
coefficient
* nis the specular lighting exponent

* a is the angle between R and V 777777

/il

7.

* cos™(a) determines how much light is
reflected by a given material

Specular lighting coefficient

A)\

-15 =1 =05 0 0.5 1 1.5
f

Ambient lighting

 Ambient lighting, is the reflected light not coming directly from the
light source

- A= I,k,

* Where I, denotes light intensity k, € |0, 1] is the coefficient of the
environment

* k, allows to specify a minimum amount of light available for all
objects in a scene, n.p. k, — 1 for bright k, — 0 for dark scenes

k, = 0.25 k,=0.5

Attenuation

e Attenuation describes the diminishing of light energy in space
* In the Phong model the coefficient f,;; models this phenomenon
* Physically-based models propose the following relation

1
* fatt"’ﬁ

Attenuation

* Because the Phong model is a direct lighting model not accounting for
reflected light rays usually too much light would be removed using
the physically-based formulation. Instead, the following relation is

used:

d
* fare = 1— (;)2
* Where r is the radius of the sphere surrounding the light source that
represents the furthest possible light

Attenuation

* Adding all the individual parts of the Phong model gives the full
Phong light reflectance model

* I =l kg + farlpykg max[L - n, 0] + farelpks(V - R)™

Attenuation

* Adding all the individual parts of the Phong model gives the full
Phong light reflectance model

* I =l kg + farlpykg max[L - n, 0] + farelpks(V - R)™

* For scenes with more than one light source, the individual intensities
are simply added together

I =1k, + 27111 fattlp,i[kd max(L; *n,0) + ks (V- Ri)n]

Light intensity and RGB colors

* We can simply scale the color vectors in the fragment shader:
Vnew =V 1

* For example: the red color v =(1, 0, 0) with 50% intensity becomes
Vnew = (0.5, 0, 0)

Result

Ambient light Diffuse light Specular light Phong lighting model

