GRK 6

Dr Wojciech Palubicki

Phong Lighting Model

Ambient light Diffuse light Specular light Phong lighting model

Color variation in space

e Diffuse lighting color is the same for each pixel
* We can assume that the color ky differs for pixels

Texturing

* From data:
* Read information from 2D images

* Procedural:

* Write a program that calculates color as a function of
position

Texture effect

Model

Texture effect

=
ot
'-
\
B
‘_",:',\, £ J :\
S -
;;‘-‘;’"F
S
"
LA
1, A
d

Model Model + Shading

Texture effect

Model + Shading Model + Shading
+ Textures

ing

Textur

AT
Vo v

D T
O B

LA

e
e
S

G

K
L

WA vavS
SYAY)Y!
S5
WV

PAVAVA
AVAVAN
ZaY,

Textured model

3D model

Ly
EE)

¥ -r'ﬁiﬁép‘
R TSR v,
A VAR A A

i
vy Ay
M S OG0 K
VAN D AVATAY va”” s A
ST
[y AW~
“ »

We need a function that associates every surface point of a
model with a coordinate of a texture

BN Ty V)
RO K R

A, 4

S\

For every point we are drawing we want to retrieve the color
information stored in the texture

Coordinates u, v

* Every vertex stores 2D coordinates (u, v) in texture space
* Coordinates u, v define positions in the texture for every vertex

* Color information between vertices is obtained via interpolation

(Ug, Vo)

Coordinates u, v

* Texture coordinates u, v are specified:
* Manually by the user
e Automatically, using parametric optimization

(Ug, Vo)

Parametric optimization

3D model

* Necessary information:

* For vertices:
 Positions (4D/3D coordinates)
 Normals (3D coordinates)
e 2D u, v coordinates

e Other information:
* Parameters and shading method
* Images of our textures

Wavefront .OBJ file

Notes:

v . vertices in x,y,z coordinates

vt - texture in u,v coordinates

vn - normals in nx,ny,nZ coordinates
#f - foces: map vertices, UVs, normals

g cube
ve.00.0890.0
ve.0 0.0 1.0
ve.01.00.0
ve.01.01.0
vi1.0 0.0 0.0
vinpoi.o
vipilin .o
vi.n1.01.0
vt 9.8 0.0

vt 1.0 0.0

vt 1.0 1.0

vt 6.0 1.0
vn90.00.01.9
vn 8.8 8.8 -1.0
vh 8.0 1.8 9.
vn8.8 -1.90 8.9
vn 1.0 8.8 9.9

vn -1.0 8.0 8.9

f 1/1/2 7/3/2 5/2/2
f 1/1/2 3/4/2 7/3/2
f 1/1/6 4/3/6 3/4/6
f 1/1/6 2/2/6 4/3/6
f 3/1/3 8/3/3 7/4/3

Texture mapping

* Texturing is the mapping of 2D images to 3D polygons
* The image we are mapping we call texture

* A pixel in the texture we call texel

* Pixel colors are given by texels in the texture

Texturing

>

texture space world space screen space

Texture space

* Texture space is the space in which the texture exists

* Itis a 2D space where the horizontal and vertical axes are called u €
[0, 1] and v € [0, 1]

* The texture completely fills the texture space, i.e. bottom left corner
is in position (0,0) and top right corner at (1, 1)

* Texel coordinates (U, V) for a M, x M, texture are
cU=|M,_ - u+1]
V=M -v +1]

* fu=0thenU=0andifu=1thenU=M,+1, therefore we musttestO<u, v
<1

. l/\
. J 11

0, Qr Qs .

4 = 0 >

P,
(), ® o J
| &

®» ®* — 1 I).,

(1 (22 = > Iy

a texture space b screen space

* Vertices of polygon P, correspond to —a
vertices Q in texture space

* Every transformation should be
accounted for in texture space

* Using the scan-line method, maximum
P_is computed by interpolating | .
between P, and P, P

 Similarly maximum P is computed by
interpolating between P, and P,

* Corresponding maxima in texture space i
Q,and Qg, are computed by
interpolating the edges of the texture

* Pixels between P _and P assume the
same color as texels between Q; and Qg o e

Computing the maxima

Vertex coordinates are scaled to display size
N
X = max [1,(x5+1)% : y = max [1,(y5+1)7y]

Maxima P, and P, are initialized with value of the greatest coordinate y, (i.e. P,)
Coordinate y of P, and P; is calculated by deducting 1 from the current coordinate

X, is calculated by interpolating between P, and P,
X4—X1
Ya—Y1

Computing the maxima

Xg4—X1
Y4—Y1
e Gradient is constant

’XL:X'L_AXL

’xR:xR_AxR

* Where
e Ay, = left edge length x4—Xxq
L= left edge height - Ya—Y1
right edge length Xg4—X
. AXR _ryg 9 gtn __ X4—Xx3

right edge height - Va—Y3

Computing the maxima

left | right
width (4. 41) width
(g, 1q) (UR.UR) (ug, v3) (e —— o~ "
- »
texture (rp.y) (rp.y)| right
scan line loft ' height
height : scan line
height .
(ug,.vg) width
texture scan (r3.y3)
line width
(r1.y1)
L » (ro.y2)
(uy. 1) ({ug, 179)

a texture

b polygon

Computing the maxima in texture space

* v, translates between v, and v, similarly as 'y
betweeny, andy,

Ya—Y1

* If P, lowers to the next scan line:

’UL:U,L_AU,L

'szvL_AUL

* Similarly for ug and vg

(g, vy \UR,.vR)

.
-

.
texture
scan line
height
'] !
texture scan
line width
e)
left right
width (7 ,’;‘/_) width
- P— — - - e -
/'/ \
L.y l// \\1 ru.4) right
/ oy height
/ scan line S
V i width »
/ / (z3.v
L/ //
/
l’\ ' /
\\
N /
N /
\ /
\\\ //
v
re, Y42)

Interpolation of scan lines

(g, vy \UR,.vR)

* Starting with (x, xz) we initialize u =uand v =v if.wl,..,
* For each pixel we translate on the scan line and e — m"‘*”‘"‘
update the coordinates (u, v) ine width

u=1u-+ Au

*v=v+Av
* We move from u, to ug in the same linear span as . Gun) s
—— B
for x, to x;, therefore P T N
_ o A /‘/ \“\:\ height
° Au o uR uL lhll.aht // 5(\‘.’:;:":“3 \\,
xR _xL /// //,/ (r3.v
VR—V '/ /
o Ap = LRTVL .\\
XR—XL *

Texture space Screen space

40 B

Texture space

300

=, 150§

T T T T T T
250 - ~
200 ¢ -
.
100 k- -
50 k- -
i i i s i i i i

al 100 150 200 250 100 350 400

Screen space

Why do we see artifacts?

* This texturing method relies on the assumption that mapping from 3D
to 2D is a linear transformation

* Relations between x and x, as well as y and y, are linear, relations
between z and z_ are NOT linear

* To remove the artifacts we have to take into account the distance of
the observer

Perspective projection

\T1,Y1,21)

(€2, Y2, 22)

Perspective projection

' . -
! projection plane
: (.l'|..l/|.'.‘|)
1
1
1
I
I
I
1
& '
,f'// . '
=] . + >
T [
~ '
H
i
i
i
i
1
1
1
' (2, Y2, 22)
1
1
Y
X —&

Perspective projection

|
: projection plane
: (Z1, ¥1,21)
|
|
]
!)
I -
_-l"
|
/ I
il |
- :
"1 ~ _ I
I
- = I
. |
L
E
1
1
1
' (z2, Y2, 22)
I
|
[]

Perspective projection

(Zg1, Y1, 1)

@---=-=====

projection plane

\

(T1,%1,21)

(g2, Ys2, M)

[

/

~
~

Perspective projection

* Point P in world space is projected
onto screen space P,

* Triangles OAP and OBP are similar: r,y

Xs X n O
® — — — :XS = —X viewing piane
n Z Z
I
Vs _ Y _n
=2 Sy ="y P
n Z Z ®

S
-~

*Z; =N 0 A

Perspective projection

* Line equation in world space is:
x=az+f

* Reversing the perspective
projection:

‘.X'_ZX
= Xs

()

27,

viewing plane

I

~
-

Perspective projection

* Line equation in world space is:

*x=az+f

* Reversing the perspective
projection:

‘.X'_ZX
= Xs

* Giving us %xS =az+f

()

27,

viewing plane

I

S
-

Perspective projection

* Line equation in world space is:
x=az+f

* Reversing the perspective
projection:

_Z
"X =X
* Giving us%xs =az+f

Xs «

()

Y

viewing plane

I

~
-~

e, —pnti B
Z—,anS+Cx

* This is not a linear relation of z and x,

1
*z=pn—+ £

Xs
* This is not a linear relation of z and x
* We can use the inverse relation
Ll X _ 2

z pn B
1

* The relation between ~ and x. is linear

Perspective texturing

* To apply perspective projection but still use linear interpolation we
1 :
have to compute the value . for the maxima P, and Py

u

* The vertices in texture space are divided by z giving - and g

* Linear interpolation is used as before but calculated for coordinates of
texture space (g,g) which correspond to coordinates in screen space

1
(xs» Vs ;)

P

Linear interpolation Perspective projection

ipmapping

VI

Mipmapping

* Faster texturing

ipmapping

VI

* Faster texturing

ipmapping

VI

* Faster texturing

mipmapping

Without mipmapping

Texturing and lighting

CHe eé

Lighting and
texturing

Shading Texture Applied texture

Fast Phong shading

e Texturing can be used to speed up lighting

Phong map Screen space

Texturing

* From data:
* Read information from 2D images

* Procedural:

* Write a program that calculates color as a function of
position

Procedural texturing

* Alternatively, to texture mapping we can write a program that
calculates the pixel color as a function of position (x, v, z)

* f(x,y,z) = color

Procedural texturing

* Pros:
* Uses up less memory
* Infinite resolution

* Cons:
* Less intuitive

e Usually hard to find a function that simulates a
given pattern

Example: 3D stripes

* Stripes along axis x:

Stripes(Xx., Y., Z.)
{

If(sin x, > @) return colore
Else return colorl

¥

Example: 3D stripes

* Stripes along axis z:

Stripes(Xx., Y., Z.)
{

If(sin z, > @) return colore
Else return colorl

Example: 3D stripes
e Stripes with variable width
)

Stripes(x., y., z., width

{

If(sin (mr * x./ width) > 0)
return colore
Else return colorl
}

Example: 3D stripes

e Stripes with variable width

Stripes(x., y., z., width)
{
If(sin (mr * x./ width) > 0)
return colore
Else return colorl

A sin (2x)

A SIn (x)

Asin (1/2 x)

Q-
(9]
-

3D stripes
e Gradual variation of colors
Stripes(x., Y., z., width)
{
t = (1 + sin (m * x,/ width)) / 2
Return (1 - t) color@® + t colorl
}

Normal mapping

Texture Normal map

Normal Mapping

Without normal mapping Normal mapping

Tangent space

Where to calculate lighting?

TBN Matrix

Model Matrix

Modelview Matrix

View Matrix

Projection Matrix

Calculate lighting in tangent space

TBN Matrix

Lighting
Parameters
Model Matrix

Modelview Matrix

View Matrix

Vertex Shader

* Create a vertex shader with 4 attributes

 layout(location = @) in vec3 vertexPosition;
 layout(location = 1) in vec2 vertexTexCoord;
 layout(location = 2) in vec3 vertexNormal;

« layout(location = 3) in vec3 vertexTangent;

* Calculate the normal, tangent and bitangent in world space
(multiply modelMatrix with normal and tangent vectors - bitangent is the
cross of transformed normal and tangent)

* Transform light, camera position and vertex position by
tangent basis, e.g.

e 1.z = dot (lightDir, n);

* Pass the transformed vectors to fragment shader

Fragment Shader

* Create 2 sampler2D variables for texture and normal map

* Instead of the interpolated normal use the normal stored in the
normal map (you have to scale the normal [0,1]° =2 [-1,1] 3)

 Calculate lighting model as before but use the transformed vectors

Normal mapping

original mesh
4M triangles

N AV

S Vavy b
R
ﬂﬁ‘%@uﬂ
WA
WS

e

N A

WS

NSV

simplified mesh
500 triangles

simplified mesh
and normal mapping
500 triang|55

	Folie 1: GRK 6
	Folie 2: Phong Lighting Model
	Folie 3: Color variation in space
	Folie 4: Texturing
	Folie 5: Texture effect
	Folie 6: Texture effect
	Folie 7: Texture effect
	Folie 8: Texturing
	Folie 9
	Folie 10
	Folie 11: Coordinates u, v
	Folie 12: Coordinates u, v
	Folie 13: Parametric optimization
	Folie 14: 3D model
	Folie 15: Wavefront .OBJ file
	Folie 16: Texture mapping
	Folie 17: Texturing
	Folie 18: Texture space
	Folie 19
	Folie 20
	Folie 21
	Folie 22: Computing the maxima
	Folie 23: Computing the maxima
	Folie 24: Computing the maxima
	Folie 25: Computing the maxima in texture space
	Folie 26: Interpolation of scan lines
	Folie 27
	Folie 28
	Folie 29: Why do we see artifacts?
	Folie 30: Perspective projection
	Folie 31: Perspective projection
	Folie 32: Perspective projection
	Folie 33: Perspective projection
	Folie 34: Perspective projection
	Folie 35: Perspective projection
	Folie 36: Perspective projection
	Folie 37: Perspective projection
	Folie 38
	Folie 39
	Folie 40: Perspective texturing
	Folie 41
	Folie 42: Mipmapping
	Folie 43: Mipmapping
	Folie 44: Mipmapping
	Folie 45: Mipmapping
	Folie 46: Texturing and lighting
	Folie 47: Fast Phong shading
	Folie 48: Texturing
	Folie 49: Procedural texturing
	Folie 50: Procedural texturing
	Folie 51: Example: 3D stripes
	Folie 52: Example: 3D stripes
	Folie 53: Example: 3D stripes
	Folie 54: Example: 3D stripes
	Folie 55: 3D stripes
	Folie 56: Normal mapping
	Folie 57: Normal Mapping
	Folie 58: Tangent space
	Folie 59: Where to calculate lighting?
	Folie 60: Calculate lighting in tangent space
	Folie 61: Vertex Shader
	Folie 62: Fragment Shader
	Folie 63: Normal mapping

