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Phong Lighting Model

Ambient light Diffuse light Specular light Phong lighting model



Color variation in space

e Diffuse lighting color is the same for each pixel
* We can assume that the color ky differs for pixels




Texturing

* From data:
* Read information from 2D images

* Procedural:

* Write a program that calculates color as a function of
position




Texture effect

Model



Texture effect
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Texture effect

Model + Shading Model + Shading
+ Textures
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We need a function that associates every surface point of a
model with a coordinate of a texture
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For every point we are drawing we want to retrieve the color
information stored in the texture



Coordinates u, v

* Every vertex stores 2D coordinates (u, v) in texture space
* Coordinates u, v define positions in the texture for every vertex

* Color information between vertices is obtained via interpolation

(Ug, Vo)




Coordinates u, v

* Texture coordinates u, v are specified:
* Manually by the user
e Automatically, using parametric optimization

(Ug, Vo)




Parametric optimization




3D model

* Necessary information:

* For vertices:
 Positions (4D/3D coordinates)
 Normals (3D coordinates)
e 2D u, v coordinates

e Other information:
* Parameters and shading method
* Images of our textures



Wavefront .OBJ file

# Notes:

# v . vertices in x,y,z coordinates

# vt - texture in u,v coordinates

# vn - normals in nx,ny,nZ coordinates
#f - foces: map vertices, UVs, normals

g cube
ve.00.0890.0
ve.0 0.0 1.0
ve.01.00.0
ve.01.01.0
vi1.0 0.0 0.0
vinpoi.o
vipilin .o
vi.n1.01.0
vt 9.8 0.0

vt 1.0 0.0

vt 1.0 1.0

vt 6.0 1.0
vn90.00.01.9
vn 8.8 8.8 -1.0
vh 8.0 1.8 9.
vn8.8 -1.90 8.9
vn 1.0 8.8 9.9

vn -1.0 8.0 8.9

f 1/1/2 7/3/2 5/2/2
f 1/1/2 3/4/2 7/3/2
f 1/1/6 4/3/6 3/4/6
f 1/1/6 2/2/6 4/3/6
f 3/1/3 8/3/3 7/4/3



Texture mapping

* Texturing is the mapping of 2D images to 3D polygons
* The image we are mapping we call texture

* A pixel in the texture we call texel

* Pixel colors are given by texels in the texture



Texturing

>

texture space world space screen space



Texture space

* Texture space is the space in which the texture exists

* Itis a 2D space where the horizontal and vertical axes are called u €
[0, 1] and v € [0, 1]

* The texture completely fills the texture space, i.e. bottom left corner
is in position (0,0) and top right corner at (1, 1)

* Texel coordinates (U, V) for a M, x M, texture are
cU=|M,_ - u+1]
V=M -v +1]

* fu=0thenU=0andifu=1thenU=M,+1, therefore we musttestO<u, v
<1
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* Vertices of polygon P, correspond to —a
vertices Q in texture space

* Every transformation should be
accounted for in texture space

* Using the scan-line method, maximum
P_is computed by interpolating | .
between P, and P, P

 Similarly maximum P is computed by
interpolating between P, and P,




* Corresponding maxima in texture space i
Q,and Qg, are computed by
interpolating the edges of the texture

* Pixels between P _and P assume the
same color as texels between Q; and Qg o e




Computing the maxima

Vertex coordinates are scaled to display size
N
X = max [1,(x5+1)% : y = max [1,(y5+1)7y]

Maxima P, and P, are initialized with value of the greatest coordinate y, (i.e. P,)
Coordinate y of P, and P; is calculated by deducting 1 from the current coordinate

X, is calculated by interpolating between P, and P,
X4—X1
Ya—Y1




Computing the maxima

Xg4—X1
Y4—Y1
e Gradient is constant

’XL:X'L_AXL

’xR:xR_AxR

* Where
e Ay, = left edge length  x4—Xxq
L= left edge height - Ya—Y1
right edge length Xg4—X
. AXR _ryg 9 gtn __ X4—Xx3

right edge height - Va—Y3



Computing the maxima

left | right
width (4. 41) width
(g, 1q) (UR.UR) (ug, v3) (e —— o~ "
- »
texture (rp.y) (rp.y)| right
scan line loft ' height
height : scan line
height .
(ug,.vg) width
texture scan (r3.y3)
line width
(r1.y1)
L » (ro.y2)
(uy. 1) ({ug, 179)

a texture

b polygon



Computing the maxima in texture space

* v, translates between v, and v, similarly as 'y
betweeny, andy,

Ya—Y1

* If P, lowers to the next scan line:

’UL:U,L_AU,L

'szvL_AUL

* Similarly for ug and vg

(g, vy \UR,.vR)
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Interpolation of scan lines

(g, vy \UR,.vR)

* Starting with (x, xz) we initialize u =uand v =v if.wl,..,
* For each pixel we translate on the scan line and e — m"‘*”‘"‘
update the coordinates (u, v) ine width

u=1u-+ Au

*v=v+Av
* We move from u, to ug in the same linear span as . Gun) s
—— B
for x, to x;, therefore P T N
_ o A /‘/ \“\:\ height
° Au o uR uL lhll.aht // 5(\‘.’:;:":“3 \\,
xR _xL /// //,/ (r3.v
VR—V '/ /
o Ap = LRTVL .\\
XR—XL *



Texture space Screen space
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Why do we see artifacts?

* This texturing method relies on the assumption that mapping from 3D
to 2D is a linear transformation

* Relations between x and x, as well as y and y, are linear, relations
between z and z_ are NOT linear

* To remove the artifacts we have to take into account the distance of
the observer



Perspective projection

\T1,Y1,21)

(€2, Y2, 22)




Perspective projection
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Perspective projection
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Perspective projection

(Zg1, Y1, 1)
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Perspective projection

* Point P in world space is projected
onto screen space P,

* Triangles OAP and OBP are similar: r,y

Xs X n O
® — — — :XS = —X viewing piane
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Perspective projection

* Line equation in world space is:
x=az+f

* Reversing the perspective
projection:

‘.X'_ZX
= Xs
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Perspective projection

* Line equation in world space is:

*x=az+f

* Reversing the perspective
projection:

‘.X'_ZX
= Xs

* Giving us %xS =az+f
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Perspective projection

* Line equation in world space is:
x=az+f

* Reversing the perspective
projection:

_Z
"X =X
* Giving us%xs =az+f
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* This is not a linear relation of z and x,




1
*z=pn—+ £

Xs
* This is not a linear relation of z and x
* We can use the inverse relation
Ll X _ 2

z pn B
1

* The relation between ~ and x. is linear




Perspective texturing

* To apply perspective projection but still use linear interpolation we
1 :
have to compute the value . for the maxima P, and Py

u

* The vertices in texture space are divided by z giving - and g

* Linear interpolation is used as before but calculated for coordinates of
texture space (g,g) which correspond to coordinates in screen space

1
(xs» Vs ;)



P

Linear interpolation Perspective projection
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Mipmapping

* Faster texturing




ipmapping

VI

* Faster texturing




ipmapping

VI

* Faster texturing

mipmapping

Without mipmapping



Texturing and lighting

CHe eé

Lighting and
texturing

Shading Texture Applied texture



Fast Phong shading

e Texturing can be used to speed up lighting

Phong map Screen space



Texturing

* From data:
* Read information from 2D images

* Procedural:

* Write a program that calculates color as a function of
position




Procedural texturing

* Alternatively, to texture mapping we can write a program that
calculates the pixel color as a function of position (x, v, z)

* f(x,y,z) = color



Procedural texturing

* Pros:
* Uses up less memory
* Infinite resolution

* Cons:
* Less intuitive

e Usually hard to find a function that simulates a
given pattern




Example: 3D stripes

* Stripes along axis x:

Stripes(Xx., Y., Z.)
{

If(sin x, > @) return colore
Else return colorl

¥




Example: 3D stripes

* Stripes along axis z:

Stripes(Xx., Y., Z.)
{

If(sin z, > @) return colore
Else return colorl




Example: 3D stripes
e Stripes with variable width
)

Stripes(x., y., z., width

{

If(sin (mr * x./ width) > 0)
return colore
Else return colorl
}



Example: 3D stripes

e Stripes with variable width

Stripes(x., y., z., width)
{
If(sin (mr * x./ width) > 0)
return colore
Else return colorl

A sin (2x)

A SIn (x)

Asin (1/2 x)

Q-
(9]
-




3D stripes
e Gradual variation of colors
Stripes(x., Y., z., width)
{
t = (1 + sin (m * x,/ width)) / 2
Return (1 - t) color@® + t colorl
}



Normal mapping

Texture Normal map



Normal Mapping

Without normal mapping Normal mapping



Tangent space




Where to calculate lighting?

TBN Matrix

Model Matrix

Modelview Matrix

View Matrix

Projection Matrix



Calculate lighting in tangent space

TBN Matrix

Lighting
Parameters
Model Matrix

Modelview Matrix

View Matrix



Vertex Shader

* Create a vertex shader with 4 attributes

 layout(location = @) in vec3 vertexPosition;
 layout(location = 1) in vec2 vertexTexCoord;
 layout(location = 2) in vec3 vertexNormal;

« layout(location = 3) in vec3 vertexTangent;

* Calculate the normal, tangent and bitangent in world space
(multiply modelMatrix with normal and tangent vectors - bitangent is the
cross of transformed normal and tangent)

* Transform light, camera position and vertex position by
tangent basis, e.g.

e 1.z = dot (lightDir, n);

* Pass the transformed vectors to fragment shader



Fragment Shader

* Create 2 sampler2D variables for texture and normal map

* Instead of the interpolated normal use the normal stored in the
normal map (you have to scale the normal [0,1]° =2 [-1,1] 3)

 Calculate lighting model as before but use the transformed vectors



Normal mapping

original mesh
4M triangles
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simplified mesh
500 triangles

simplified mesh
and normal mapping
500 triang|55
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