GRK 6

Dr Wojciech Palubicki

Phong Lighting Model

Ambient light

Diffuse light

Specular light

Phong lighting model

Color variation in space

- Diffuse lighting color is the same for each pixel
- We can assume that the color k_d differs for pixels

Texturing

- From data:
 - Read information from 2D images

- Procedural:
 - Write a program that calculates color as a function of position

Texture effect

Model

Texture effect

Model

Model + Shading

Texture effect

Model

Model + Shading

Model + Shading + Textures

Texturing

3D model

Textured model

We need a function that associates every surface point of a model with a coordinate of a texture

For every point we are drawing we want to retrieve the color information stored in the texture

Coordinates u, v

- Every vertex stores 2D coordinates (u, v) in texture space
 - Coordinates u, v define positions in the texture for every vertex
- Color information between vertices is obtained via interpolation

Coordinates u, v

- Texture coordinates u, v are specified:
 - Manually by the user
 - Automatically, using parametric optimization

Parametric optimization

3D model

- Necessary information:
- For vertices:
 - Positions (4D/3D coordinates)
 - Normals (3D coordinates)
 - 2D u, v coordinates
- Other information:
 - Parameters and shading method
 - Images of our textures

Wavefront .OBJ file

v - vertices in x,y,z coordinates # vt - texture in u,v coordinates # vn - normals in nx,ny,nz coordinates # f - faces: map vertices, UVs, normals g cube v 8.0 0.0 8.0 v 0.0 0.0 1.0 v 0.0 1.0 0.0 v 0.0 1.0 1.0 v 1.0 0.0 0.0 v 1.0 0.0 1.0 v 1.0 1.0 0.0 v 1.0 1.0 1.0 vt 0.8 0.0 vt 1.0 0.0 vt 1.0 1.0 vt 0.0 1.0 vn 0.0 0.0 1.0 vn 0.0 0.0 -1.0 vn 0.0 1.0 0.0 vn 0.0 -1.0 0.0 vn 1.0 0.0 0.0 vn -1.0 0.0 0.0 f 1/1/2 7/3/2 5/2/2 f 1/1/2 3/4/2 7/3/2 f 1/1/6 4/3/6 3/4/6 f 1/1/6 2/2/6 4/3/6

f 3/1/3 8/3/3 7/4/3

Notes:

Texture mapping

- **Texturing** is the mapping of **2D** images to **3D** polygons
- The image we are mapping we call **texture**
- A pixel in the texture we call **texel**
- Pixel colors are given by texels in the texture

Texturing

Texture space

- **Texture space** is the space in which the texture exists
- It is a 2D space where the horizontal and vertical axes are called u ∈
 [0, 1] and v ∈ [0, 1]
- The texture completely fills the texture space, i.e. bottom left corner is in position (0,0) and top right corner at (1, 1)
- Texel coordinates (U, V) for a $M_x \times M_y$ texture are
 - U = $[M_x \cdot u + 1]$
 - V = $[M_y \cdot v + 1]$
 - If u = 0 then U = 0 and if u = 1 then U = M_x + 1, therefore we must test 0 < u, v
 < 1

- Vertices of polygon P, correspond to vertices Q in texture space
- Every transformation should be accounted for in texture space
- Using the scan-line method, maximum
 P_L is computed by interpolating
 between P₁ and P₄
- Similarly maximum P_R is computed by interpolating between P_4 and P_3

- Corresponding maxima in texture space Q_L and Q_R , are computed by interpolating the edges of the texture
- Pixels between P_L and P_R assume the same color as texels between Q_L and Q_R

Computing the maxima

- Vertex coordinates are scaled to display size
- $x = max \left[1, (x_s + 1) \frac{N_x}{2} \right], \qquad y = max \left[1, (y_s + 1) \frac{N_y}{2} \right]$
- Maxima P_L and P_R are initialized with value of the greatest coordinate y_s (i.e. P_4)
- Coordinate y of P_L and P_R is calculated by deducting 1 from the current coordinate
- x_L is calculated by interpolating between P_4 and P_1

•
$$x_L = x_4 - \frac{x_4 - x_1}{y_4 - y_1}$$

Computing the maxima

•
$$x_L = x_4 - \frac{x_4 - x_1}{y_4 - y_1}$$

- Gradient is constant
- $x_L = x_L \Delta x_L$
- $x_R = x_R \Delta x_R$
- Where

•
$$\Delta x_L = \frac{left \ edge \ length}{left \ edge \ height} = \frac{x_4 - x_1}{y_4 - y_1}$$

• $\Delta x_R = \frac{right \ edge \ length}{right \ edge \ height} = \frac{x_4 - x_3}{y_4 - y_3}$

Computing the maxima

Computing the maxima in texture space

 v_L translates between v₄ and v₁ similarly as y between y₄ and y₁

•
$$\Delta u_L = \frac{u_4 - u_1}{y_4 - y_1}$$

•
$$\Delta v_L = \frac{v_4 - v_1}{y_4 - y_1}$$

- If P_L lowers to the next scan line:
- $u_L = u_L \Delta u_L$
- $v_L = v_L \Delta v_L$
- Similarly for u_R and v_R

Interpolation of scan lines

- Starting with (x_L, x_R) we initialize $u = u_L$ and $v = v_L$
- For each pixel we translate on the scan line and update the coordinates (u, v)
- $u = u + \Delta u$
- $v = v + \Delta v$
- We move from u_L to u_R in the same linear span as for x_L to x_R , therefore

•
$$\Delta u = \frac{u_R - u_L}{x_R - x_L}$$

•
$$\Delta v = \frac{v_R - v_L}{x_R - x_L}$$

Texture space

Screen space

Why do we see artifacts?

- This texturing method relies on the assumption that mapping from 3D to 2D is a linear transformation
- Relations between x and x_s as well as y and y_s are linear, relations between z and z_s are NOT linear
- To remove the artifacts we have to take into account the distance of the observer

Perspective projection

Perspective projection

Perspective projection

- Point P in world space is projected onto screen space P_s
- Triangles OAP and OBP are similar:

•
$$\frac{x_s}{n} = \frac{x}{z} \implies x_s = \frac{n}{z}x$$

• $\frac{y_s}{n} = \frac{y}{z} \implies y_s = \frac{n}{z}y$
• $z_s = n$

- Line equation in world space is:
- $x = \alpha z + \beta$
- Reversing the perspective projection:

•
$$x = \frac{z}{n} x_s$$

- Line equation in world space is:
- $x = \alpha z + \beta$
- Reversing the perspective projection:

•
$$x = \frac{z}{n} x_s$$

• Giving us $\frac{z}{n} x_s = \alpha z + \beta$

- Line equation in world space is:
- $x = \alpha z + \beta$
- Reversing the perspective projection:

•
$$x = \frac{z}{n} x_s$$

• Giving us $\frac{z}{n} x_s = \alpha z + \beta$
• $z = \beta n \frac{1}{x_s} + \frac{\beta}{\alpha}$

•
$$z = \beta n \frac{1}{x_s} + \frac{\beta}{\alpha}$$

• This is not a linear relation of z and x_s

•
$$z = \beta n \frac{1}{x_s} + \frac{\beta}{\alpha}$$

- This is not a linear relation of z and x_s
- We can use the inverse relation

•
$$\frac{1}{z} = \frac{x_s}{\beta n} - \frac{\alpha}{\beta}$$

• The relation between $\frac{1}{z}$ and x_s is linear

Perspective texturing

- To apply perspective projection but still use linear interpolation we have to compute the value $\frac{1}{z}$ for the maxima P_L and P_R
- The vertices in texture space are divided by z giving $\frac{u}{z}$ and $\frac{v}{z}$
- Linear interpolation is used as before but calculated for coordinates of texture space $(\frac{u}{z}, \frac{v}{z})$ which correspond to coordinates in screen space $(x_s, y_s, \frac{1}{z})$

• Faster texturing

• Faster texturing

• Faster texturing

Without mipmapping

mipmapping

Texturing and lighting

Shading

Applied texture

Lighting and texturing

Fast Phong shading

• Texturing can be used to speed up lighting

Texturing

- From data:
 - Read information from 2D images

- Procedural:
 - Write a program that calculates color as a function of position

Procedural texturing

• Alternatively, to texture mapping we can write a program that calculates the pixel color as a function of position (x, y, z)

Procedural texturing

- Pros:
 - Uses up less memory
 - Infinite resolution
- Cons:
 - Less intuitive
 - Usually hard to find a function that simulates a given pattern

• Stripes along axis x:

```
Stripes(x<sub>s</sub>, y<sub>s</sub>, z<sub>s</sub>)
{
    If(sin x<sub>s</sub> > 0) return color0
    Else return color1
}
```


• Stripes along axis z:

```
Stripes(x<sub>s</sub>, y<sub>s</sub>, z<sub>s</sub>)
{
    If(sin z<sub>s</sub> > 0) return color0
    Else return color1
}
```


• Stripes with variable width

```
Stripes(x<sub>s</sub>, y<sub>s</sub>, z<sub>s</sub>, width)
{
    If(sin (π * x<sub>s</sub> / width) > 0)
      return color0
    Else return color1
}
```


• Stripes with variable width

Stripes(x_s, y_s, z_s, width)
{
 If(sin (π * x_s / width) > 0)
 return color0
 Else return color1
}

3D stripes

• Gradual variation of colors

```
Stripes(x<sub>s</sub>, y<sub>s</sub>, z<sub>s</sub>, width)
{
    t = (1 + sin (π * x<sub>s</sub> / width)) / 2
    Return (1 - t) color0 + t color1
}
```


Normal mapping

Texture

Normal map

Normal Mapping

Without normal mapping

Normal mapping

Tangent space

Where to calculate lighting?

Calculate lighting in tangent space

Vertex Shader

- Create a vertex shader with 4 attributes
 - layout(location = 0) in vec3 vertexPosition;
 - layout(location = 1) in vec2 vertexTexCoord;
 - layout(location = 2) in vec3 vertexNormal;
 - layout(location = 3) in vec3 vertexTangent;
- Calculate the normal, tangent and bitangent in world space (multiply modelMatrix with normal and tangent vectors – bitangent is the cross of transformed normal and tangent)
- Transform light, camera position and vertex position by tangent basis, e.g.
 - l.x = dot (lightDir, t);
 - l.y = dot (lightDir, b);
 - l.z = dot (lightDir, n);
- Pass the transformed vectors to fragment shader

Fragment Shader

- Create 2 sampler2D variables for texture and normal map
- Instead of the interpolated normal use the normal stored in the normal map (you have to scale the normal $[0,1]^3 \rightarrow [-1,1]^3$)
- Calculate lighting model as before but use the transformed vectors

Normal mapping

original mesh 4M triangles simplified mesh 500 triangles simplified mesh and normal mapping 500 triangles