
GRK 6
Dr Wojciech Palubicki

Phong Lighting Model

Ambient light Diffuse light Specular light Phong lighting model

Color variation in space

• Diffuse lighting color is the same for each pixel

• We can assume that the color kd differs for pixels

Texturing

• From data:
• Read information from 2D images

• Procedural:
• Write a program that calculates color as a function of

position

Texture effect

Model

Texture effect

Model Model + Shading

Texture effect

Model Model + Shading Model + Shading
+ Textures

Texturing

3D model Textured model

We need a function that associates every surface point of a
model with a coordinate of a texture

For every point we are drawing we want to retrieve the color
information stored in the texture

Coordinates u, v

• Every vertex stores 2D coordinates (u, v) in texture space
• Coordinates u, v define positions in the texture for every vertex

• Color information between vertices is obtained via interpolation

Coordinates u, v

• Texture coordinates u, v are specified:
• Manually by the user

• Automatically, using parametric optimization

Parametric optimization

3D model

• Necessary information:

• For vertices:
• Positions (4D/3D coordinates)

• Normals (3D coordinates)

• 2D u, v coordinates

• Other information:
• Parameters and shading method

• Images of our textures

Wavefront .OBJ file

Texture mapping

• Texturing is the mapping of 2D images to 3D polygons

• The image we are mapping we call texture

• A pixel in the texture we call texel

• Pixel colors are given by texels in the texture

Texturing

Texture space

• Texture space is the space in which the texture exists

• It is a 2D space where the horizontal and vertical axes are called u ∈
[0, 1] and v ∈ [0, 1]

• The texture completely fills the texture space, i.e. bottom left corner
is in position (0,0) and top right corner at (1, 1)

• Texel coordinates (U, V) for a Mx x My texture are
• U = Mx ∙ u + 1

• V = My ∙ 𝑣 + 1

• If u = 0 then U = 0 and if u = 1 then U = Mx + 1, therefore we must test 0 < u, v
< 1

• Vertices of polygon P, correspond to
vertices Q in texture space

• Every transformation should be
accounted for in texture space

• Using the scan-line method, maximum
PL is computed by interpolating
between P1 and P4

• Similarly maximum PR is computed by
interpolating between P4 and P3

• Corresponding maxima in texture space
QLand QR, are computed by
interpolating the edges of the texture

• Pixels between PL and PR assume the
same color as texels between QL and QR

Computing the maxima

• Vertex coordinates are scaled to display size

• 𝑥 = 𝑚𝑎𝑥 1, 𝑥𝑠 + 1
𝑁𝑥

2
, 𝑦 = 𝑚𝑎𝑥 1, 𝑦𝑠 + 1

𝑁𝑦

2

• Maxima PL and PR are initialized with value of the greatest coordinate ys (i.e. P4)

• Coordinate y of PL and PR is calculated by deducting 1 from the current coordinate

• xL is calculated by interpolating between P4 and P1

• 𝑥𝐿 = 𝑥4 −
𝑥4−𝑥1

𝑦4−𝑦1

• Bo 𝑦 = 𝑦4 − 1

• 𝑥𝐿 = 𝑥4 −
𝑦4−𝑦4+1

𝑦4−𝑦1
𝑥4 − 𝑥1 = 𝑥4 −

𝑥4−𝑥1

𝑦4−𝑦1

Computing the maxima

• 𝑥𝐿 = 𝑥4 −
𝑥4−𝑥1

𝑦4−𝑦1

• Gradient is constant

• 𝑥𝐿 = 𝑥𝐿 − ∆𝑥𝐿

• 𝑥𝑅 = 𝑥𝑅 − ∆𝑥𝑅
• Where

• ∆𝑥𝐿 =
𝑙𝑒𝑓𝑡 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑙𝑒𝑓𝑡 𝑒𝑑𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡
=

𝑥4−𝑥1

𝑦4−𝑦1

• ∆𝑥𝑅 =
𝑟𝑖𝑔ℎ𝑡 𝑒𝑑𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑖𝑔ℎ𝑡 𝑒𝑑𝑔𝑒 ℎ𝑒𝑖𝑔ℎ𝑡
=

𝑥4−𝑥3

𝑦4−𝑦3

Computing the maxima

Computing the maxima in texture space

• vL translates between v4 and v1 similarly as y
between y4 and y1

• ∆𝑢𝐿 =
𝑢4−𝑢1

𝑦4−𝑦1

• ∆𝑣𝐿 =
𝑣4−𝑣1

𝑦4−𝑦1

• If PL lowers to the next scan line:

• 𝑢𝐿 = 𝑢𝐿 − ∆𝑢𝐿

• 𝑣𝐿 = 𝑣𝐿 − ∆𝑣𝐿
• Similarly for uR and vR

Interpolation of scan lines

• Starting with (xL, xR) we initialize u = uLand v = vL

• For each pixel we translate on the scan line and
update the coordinates (u, v)

• 𝑢 = 𝑢 + ∆𝑢

• 𝑣 = 𝑣 + ∆𝑣

• We move from uL to uR in the same linear span as
for xL to xR, therefore

• ∆𝑢 =
𝑢𝑅−𝑢𝐿

𝑥𝑅−𝑥𝐿

• ∆𝑣 =
𝑣𝑅−𝑣𝐿

𝑥𝑅−𝑥𝐿

Texture space Screen space

Texture space Screen space

Why do we see artifacts?

• This texturing method relies on the assumption that mapping from 3D
to 2D is a linear transformation

• Relations between x and xs as well as y and ys are linear, relations
between z and zs are NOT linear

• To remove the artifacts we have to take into account the distance of
the observer

Perspective projection

Perspective projection

Perspective projection

Perspective projection

Perspective projection

• Point P in world space is projected
onto screen space Ps

• Triangles OAP and OBP are similar:

•
𝑥𝑠

𝑛
=

𝑥

𝑧
֜𝑥𝑠 =

𝑛

𝑧
𝑥

•
𝑦𝑠

𝑛
=

𝑦

𝑧
֜𝑦𝑠 =

𝑛

𝑧
𝑦

• 𝑧𝑠 = 𝑛

Perspective projection

• Line equation in world space is:

• 𝑥 = 𝛼𝑧 + 𝛽

• Reversing the perspective
projection:

• 𝑥 =
𝑧

𝑛
𝑥𝑠

• Daje nam
𝑧

𝑛
𝑥𝑠 = 𝛼𝑧 + 𝛽

• 𝑧 = 𝛽𝑛
1

𝑥𝑠
+

𝛽

𝛼

Perspective projection

• Line equation in world space is:

• 𝑥 = 𝛼𝑧 + 𝛽

• Reversing the perspective
projection:

• 𝑥 =
𝑧

𝑛
𝑥𝑠

• Giving us
𝑧

𝑛
𝑥𝑠 = 𝛼𝑧 + 𝛽

• 𝑧 = 𝛽𝑛
1

𝑥𝑠
+

𝛽

𝛼

Perspective projection

• Line equation in world space is:

• 𝑥 = 𝛼𝑧 + 𝛽

• Reversing the perspective
projection:

• 𝑥 =
𝑧

𝑛
𝑥𝑠

• Giving us
𝑧

𝑛
𝑥𝑠 = 𝛼𝑧 + 𝛽

• 𝑧 = 𝛽𝑛
1

𝑥𝑠
+

𝛽

𝛼

• 𝑧 = 𝛽𝑛
1

𝑥𝑠
+

𝛽

𝛼

• This is not a linear relation of z and xs

• Ale możemy używać zwrotna relacje

•
1

𝑧
=

𝑥𝑠

𝛽𝑛
−

𝛼

𝛽

• Która jest liniowa relacja pomiędzy
1

𝑧
i xs

• 𝑧 = 𝛽𝑛
1

𝑥𝑠
+

𝛽

𝛼

• This is not a linear relation of z and xs

• We can use the inverse relation

•
1

𝑧
=

𝑥𝑠

𝛽𝑛
−

𝛼

𝛽

• The relation between
1

𝑧
and xs is linear

Perspective texturing

• To apply perspective projection but still use linear interpolation we

have to compute the value
1

𝑧
for the maxima PL and PR

• The vertices in texture space are divided by z giving
𝑢

𝑧
and

𝑣

𝑧

• Linear interpolation is used as before but calculated for coordinates of
texture space (

𝑢

𝑧
,
𝑣

𝑧
) which correspond to coordinates in screen space

(𝑥𝑠, 𝑦𝑠,
1

𝑧
)

Perspective projectionLinear interpolation

Mipmapping

Mipmapping

• Faster texturing

Mipmapping

• Faster texturing

Mipmapping

• Faster texturing

Without mipmapping mipmapping

Texturing and lighting

Shading Texture Applied texture
Lighting and
texturing

Fast Phong shading

• Texturing can be used to speed up lighting

Texturing

• From data:
• Read information from 2D images

• Procedural:
• Write a program that calculates color as a function of

position

Procedural texturing

• Alternatively, to texture mapping we can write a program that
calculates the pixel color as a function of position (x, y, z)

• 𝑓 𝑥, 𝑦, 𝑧 → 𝑐𝑜𝑙𝑜𝑟

Procedural texturing

• Pros:
• Uses up less memory

• Infinite resolution

• Cons:
• Less intuitive

• Usually hard to find a function that simulates a
given pattern

Example: 3D stripes

• Stripes along axis x:

Stripes(xs, ys, zs)
{

If(sin xs > 0) return color0
Else return color1

}

Example: 3D stripes

• Stripes along axis z:

Stripes(xs, ys, zs)
{

If(sin zs > 0) return color0
Else return color1

}

Example: 3D stripes

• Stripes with variable width

Stripes(xs, ys, zs, width)
{

If(sin (𝜋 * xs / width) > 0)
return color0

Else return color1
}

Example: 3D stripes

• Stripes with variable width

Stripes(xs, ys, zs, width)
{

If(sin (𝜋 * xs / width) > 0)
return color0

Else return color1
}

3D stripes

• Gradual variation of colors

Stripes(xs, ys, zs, width)
{

t = (1 + sin (𝜋 * xs / width)) / 2
Return (1 - t) color0 + t color1

}

Normal mapping

Texture Normal map

Normal Mapping

Without normal mapping Normal mapping

Tangent space

Where to calculate lighting?

Calculate lighting in tangent space

Lighting
Parameters

Vertex Shader

• Create a vertex shader with 4 attributes
• layout(location = 0) in vec3 vertexPosition;
• layout(location = 1) in vec2 vertexTexCoord;
• layout(location = 2) in vec3 vertexNormal;
• layout(location = 3) in vec3 vertexTangent;

• Calculate the normal, tangent and bitangent in world space
(multiply modelMatrix with normal and tangent vectors – bitangent is the
cross of transformed normal and tangent)

• Transform light, camera position and vertex position by
tangent basis, e.g.
• l.x = dot (lightDir, t);
• l.y = dot (lightDir, b);
• l.z = dot (lightDir, n);

• Pass the transformed vectors to fragment shader

Fragment Shader

• Create 2 sampler2D variables for texture and normal map

• Instead of the interpolated normal use the normal stored in the
normal map (you have to scale the normal [0,1]3

→ [-1,1] 3)

• Calculate lighting model as before but use the transformed vectors

Normal mapping

	Folie 1: GRK 6
	Folie 2: Phong Lighting Model
	Folie 3: Color variation in space
	Folie 4: Texturing
	Folie 5: Texture effect
	Folie 6: Texture effect
	Folie 7: Texture effect
	Folie 8: Texturing
	Folie 9
	Folie 10
	Folie 11: Coordinates u, v
	Folie 12: Coordinates u, v
	Folie 13: Parametric optimization
	Folie 14: 3D model
	Folie 15: Wavefront .OBJ file
	Folie 16: Texture mapping
	Folie 17: Texturing
	Folie 18: Texture space
	Folie 19
	Folie 20
	Folie 21
	Folie 22: Computing the maxima
	Folie 23: Computing the maxima
	Folie 24: Computing the maxima
	Folie 25: Computing the maxima in texture space
	Folie 26: Interpolation of scan lines
	Folie 27
	Folie 28
	Folie 29: Why do we see artifacts?
	Folie 30: Perspective projection
	Folie 31: Perspective projection
	Folie 32: Perspective projection
	Folie 33: Perspective projection
	Folie 34: Perspective projection
	Folie 35: Perspective projection
	Folie 36: Perspective projection
	Folie 37: Perspective projection
	Folie 38
	Folie 39
	Folie 40: Perspective texturing
	Folie 41
	Folie 42: Mipmapping
	Folie 43: Mipmapping
	Folie 44: Mipmapping
	Folie 45: Mipmapping
	Folie 46: Texturing and lighting
	Folie 47: Fast Phong shading
	Folie 48: Texturing
	Folie 49: Procedural texturing
	Folie 50: Procedural texturing
	Folie 51: Example: 3D stripes
	Folie 52: Example: 3D stripes
	Folie 53: Example: 3D stripes
	Folie 54: Example: 3D stripes
	Folie 55: 3D stripes
	Folie 56: Normal mapping
	Folie 57: Normal Mapping
	Folie 58: Tangent space
	Folie 59: Where to calculate lighting?
	Folie 60: Calculate lighting in tangent space
	Folie 61: Vertex Shader
	Folie 62: Fragment Shader
	Folie 63: Normal mapping

