GRK 9

Dr Wojciech Palubicki

Overview

- Shadow mapping
- Animation

Shadows

Shadow mapping

Shadow mappigng

- Image-space shadow determination
- Lance Williams published the basic idea in 1978
- Completely image-space algorithm
- means no knowledge of scene's geometry is required
- must deal with aliasing artifacts

Phase 1: Render from Light Position

- Depth image from light source

Phase 1: Render from Light Position

- Depth image from light source

Phase 2: Render from Eye Position

- Standard image (with depth) from eye

Phase 2: Project to light for shadows

- Project visible points in eye view back to light source

Projected depths match for light and eye. VISIBLE

Phase 2: Project to light for shadows

- Project visible points in eye view back to light source

Visualizing Shadow Mapping

- A fairly complex scene with shadows

Visualizing Shadow Mapping

- Compare with and without shadows

with shadows

without shadows

Visualizing Shadow Mapping

- The scene from the light's point-of-view

from the
eye's point-of-view again

Visualizing Shadow Mapping

- The depth buffer from the light's point-of-view

from the
light's point-of-view again

Visualizing Shadow Mapping

- Projecting the depth map onto the eye's view

depth map for light's point-of-view again

Visualizing Shadow Mapping

- Comparing light distance to light depth map

Green is where the light planar distance and the light depth map are approximately equal

Grey is where shadows should be

Visualizing Shadow Mapping

Notice how
specular
highlights
never appear in shadows

Notice how
curved
surfaces cast
shadows on each other

Depth Map Bias

Depth Map Bias

Too little bias,
everything begins to
shadow

Depth Map Bias

Too little bias,
everything begins to shadow

Too much bias, shadow starts too far back

Depth Map Bias

Slope Scaled Bias

$$
\text { float bias }=\max (0.05 *(1.0-\operatorname{dot}(\text { normal, light)), 0.005); }
$$

Light - Unbiased Depth

Percentage closer filtering (PCF)

- Goal: avoid stair-stepping artifacts
- Similar to texture filtering

Simple shadow mapping

Percentage closer filtering (PCF)

- Goal: avoid stair-stepping artifacts
- Similar to texture filtering

Percentage closer filtering (PCF)

- Instead of looking up one shadow map pixel, look up several
- Perform depth test for each shadow map pixel
- Compute percentage of lit shadow map pixels

Animation

Modeling with Transformations

- Create elementary geometric objects, then rotate, translate and scale them until you define a model

Modeling with Transformations

- But individual parts dont move in a constrained way to each other
- To introduce constraints and express kinematics we need to parametrize our model

Model to World Space

Model \rightarrow World

- Position and orient the robot hammer in world space

Model \rightarrow World

- Each part of the object is transformed independently relative to the origin

Translate base by $(5,0,0)$
Translate lower arm by $(5,0,0)$
Translate upper arm by $(5,0,0)$
Translate hammer by $(5,0,0)$

Model \rightarrow World

- Alternatively, transform every object relative to it's parent

Step 1: Translate base and its descendants by $(5,0,0)$

Relative Transformations

Step 2: Rotate lower arm and its descendants by -90 degrees about local y axis

Hierarchical Transforms

Making an Articulated Arm

- A minimal 2D jointed object:
- Two pieces, $A($ "forearm") and $B($ "upper arm")
- Attach point c on B to point a on A ("elbow")
- Desired parameters:
- Shoulder position S (point at which b winds up)
- Shoulder angle β (A and B rotate together about b)
- Elbow angle α (A rotates about $\mathrm{a}=\mathrm{c}$)

Making an Arm: Step 1

- Start with A and B in their untransformed configurations (B is hiding behind A)
- First apply a series of transformations to A.

Making an Arm: Step 2

- Translate by -a, bringing a to the origin

Making an Arm: Step 3

- Next, rotate A by the "elbow" angle α

Making an Arm: Step 4

- Translate A to form the elbow joint a c

Making an Arm: Step 5

- Translate both objects by -a bringing a to the origin (A nd B move together)

Making an Arm: Step 6

- Next rotate by the shoulder angle $-\beta$

Making an Arm: Last Step

- Finally, translate by the shoulder position S , bringing the arm to its final position

Parametrization

- $\mathrm{S}, \alpha, \beta$ are parameters of the model
- a, b and c are structural constants

Hierarchical Transforms

Model Construction

Scene Graph

Scene Graph

Scene Graph OpenGL 3.0+

```
void renderMesh(Matrix transform, Mesh mesh)
{
    // here call glDrawElements/glDrawArrays and send transform matrix to MVP uniform
    mesh->draw(transform);
    // now render all the sub-meshes, then will be transformed relative to current mesh
    for (int i=0; i<mesh->subMeshCount(); i++)
    {
        Matrix subMeshTransform = mesh->getSubMeshTransform(i);
        Mesh subMesh = mesh->getSubMesh();
        renderMesh(subMeshTransform * transform, subMesh);
    }
}
```


Keyframing

What's the inbetween motion?

Keyframing

What's the inbetween motion?

Mathematical problem: Given a set of points, what are the most reasonable points in between?

Mathematical problem: Given a set of points, what are the most reasonable points in between?

Interpolation

Mathematical problem: Given a set of points, what are the most reasonable points in between?

Linear Interpolation

Linear Interpolation

Linear Interpolation: Limitations

- May need a large numer of keyframes if motion is non-linear

Parametric Curves

- Define a continuous smooth curve f passing through the data points
- Explicit form $y=f(x)$
- Implicit form $f(x, y)=0$

- Parametric form $\mathrm{x}=\mathrm{f}(\mathrm{t}), \mathrm{y}=\mathrm{g}(\mathrm{t})$

Parametric Curve Example

- What curve does this represent?

$$
\begin{aligned}
& x=\cos (t) \\
& y=\sin (t)
\end{aligned}
$$

Cubic Curves

- We can use a cubic function to represent a smooth curve in 3D

$$
\begin{aligned}
& Q_{x}(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x} \quad 0 \leq t \leq 1 \\
& Q_{y}(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y} \\
& Q_{z}(t)=a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z}
\end{aligned}
$$

Cubic Curves

- We can use a cubic function to represent a smooth curve in 3D

$$
\begin{aligned}
& Q_{x}(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x} \quad 0 \leq t \leq 1 \\
& Q_{y}(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y} \\
& Q_{z}(t)=a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z}
\end{aligned}
$$

- Vector Form:

$$
\begin{aligned}
& \mathbf{a}=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z}
\end{array}\right] \\
& \mathbf{Q}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}
\end{aligned}
$$

Smooth Curves

- Controlling the shape of the curve

$$
Q_{x}(t)=1-t+t^{2}-t^{3}
$$

$Q_{x}(t)=1-t+3 t^{2}-t^{3}$

Constraints on the Cubics

- How many constraints do we need to determine a cubic curve?

$$
\mathbf{Q}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}
$$

Constraints on the Cubics

- How many constraints do we need to determine a cubic curve?

$$
\mathbf{Q}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}
$$

Constraints on the Cubics

- How many constraints do we need to determine a cubic curve?

$$
\begin{aligned}
& \mathbf{Q}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \\
& {\left[\begin{array}{l}
\mathbf{Q}\left(t_{1}\right) \\
\mathbf{Q}\left(t_{2}\right) \\
\mathbf{Q}\left(t_{3}\right) \\
\mathbf{Q}\left(t_{4}\right)
\end{array}\right]=\left[\begin{array}{llll}
t_{1}^{3} & t_{1}^{2} & t_{1} & 1 \\
t_{2}^{3} & t_{2}^{2} & t_{2} & 1 \\
t_{3}^{3} & t_{3}^{2} & t_{3} & 1 \\
t_{4}^{3} & t_{4}^{2} & t_{4} & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]}
\end{aligned}
$$

Natural Cubic Curves

$$
\mathbf{Q}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
t_{1}^{3} & t_{1}^{2} & t_{1} & 1 \\
t_{2}^{3} & t_{2}^{2} & t_{2} & 1 \\
t_{3}^{3} & t_{3}^{2} & t_{3} & 1 \\
t_{4}^{3} & t_{4}^{2} & t_{4} & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathbf{Q}\left(t_{1}\right) \\
\mathbf{Q}\left(t_{2}\right) \\
\mathbf{Q}\left(t_{3}\right) \\
\mathbf{Q}\left(t_{4}\right)
\end{array}\right]
$$

Natural Cubic Spline

- A spline is a curve that is piecewise-defined and is smooth at the places where the pieces connect

Continuity

Positions of splines align

$\mathrm{C}_{0} \& \mathrm{C}_{1}$ continuity

Positions and tangents of splines align

Hermite Curves

- A Hermite curve is a cubic curve determined by
- Endpoints \mathbf{p}_{0} and \mathbf{p}_{1}
- Tangent vectors (velocities) $\mathbf{v}_{\mathbf{0}}$ and $\mathbf{v}_{\mathbf{1}}$ at endpoints

Example of Hermite Curves

Tangents (Derivatives)

$$
\mathbf{Q}=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}
$$

Tangents (Derivatives)

$$
\mathbf{Q}=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \quad \frac{d \mathbf{Q}}{d t}=3 \mathbf{a} t^{2}+2 \mathbf{b} t+\mathbf{c}
$$

Tangents (Derivatives)

$$
\begin{array}{cl}
\mathbf{Q}=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} & \frac{d \mathbf{Q}}{d t}=3 \mathbf{a} t^{2}+2 \mathbf{b} t+\mathbf{c} \\
\mathbf{Q}=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right] & \frac{d \mathbf{Q}}{d t}=\left[\begin{array}{llll}
3 t^{2} & 2 t & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]
\end{array}
$$

Hermite Curves

- The value of the curve is $\mathbf{Q}(0)=p_{0}$ at $t=0$ and $\mathbf{Q}(1)=p_{1}$ at $t=1$
- The derivative of the curve to be v_{0} at $\mathrm{t}=0$ and v_{1} at $\mathrm{t}=1$

Hermite Curves

$$
\begin{aligned}
& \mathbf{v}_{0} \\
& \mathbf{Q}_{\mathbf{p}_{0}} \\
& \mathbf{Q}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \\
& \mathbf{Q}^{\prime}(t)=3 \mathbf{a} t^{2}+2 \mathbf{b} t+\mathbf{c}
\end{aligned}
$$

Hermite Curves

$$
\begin{aligned}
& \mathbf{p}_{0}=\mathbf{d} \\
& \mathbf{p}_{1}=\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d} \\
& \mathbf{v}_{0}=\mathbf{c} \\
& \mathbf{v}_{1}=3 \mathbf{a}+2 \mathbf{b}+\mathbf{c}
\end{aligned}
$$

Hermite Curves

$$
\begin{aligned}
& \mathbf{p}_{0}=\mathbf{d} \\
& \mathbf{p}_{1}=\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d} \\
& \mathbf{v}_{0}=\mathbf{c} \\
& \mathbf{v}_{1}=3 \mathbf{a}+2 \mathbf{b}+\mathbf{c}
\end{aligned}
$$

$$
\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]
$$

Hermite Interpolation

$$
\mathbf{Q}=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right]
$$

Hermite Interpolation

$$
\mathbf{Q}=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right]
$$

$\left[\begin{array}{lll}n & n_{n} \\ 0 & n & n \\ 0 & n & n\end{array}\right]$

