GRK 13

Dr Wojciech Palubicki

Phong model of lighting

Ambient + Diffuse + Specular = Phong Reflection

Physically based rendering (PBR)

- "Real-Time Rendering, 3rd Edition", A K Peters 2008
- Physics of Light
- Geometric Optics
- Mathematical description for real-time lighting (micro-facet BRDF)

Light – physical point of view

Light – physical point of view

Electromagnetic wavelengths

Wavelengths

Spectral Power Distribution (SPD)

Example: RGB Laser Projector

White light wave form

White light and laser projector light comparison

In a vacuum light propagates to infinity

When interacting with atoms it energizes them

This energy is absorbed and re-radiated as light

Simplification: Wave Optics

Refractive Index n (dimensionless)

• $n = \frac{c}{v}$

- c is the speed of light in vacuum
- v is the phase velocity of light in the medium
- Measures the **absorption** of light by a medium

Scattering particle

Snell's Law

 describes the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air

$$rac{\sin heta_2}{\sin heta_1}=rac{v_2}{v_1}=rac{n_1}{n_2}$$

Appearance of a medium

Absorption (color)

Scattering (cloudiness)

Object surfaces

Nanogeometry

Huygens-Fresnel Principle

Huygens-Fresnel Principle

Diffraction

Diffraction

Diffraction from Optically-Smooth Surface

Diffraction from Optically-Smooth Surface

Diffraction from Optically-Smooth Surface

Geometric Optics

Microgeometry

Rougher = Blurrier Reflections

Statistical macroscopic view

What happens to the refracted light?

Metals (Conductors)

Dielectrics (Insulators)

Semiconductors

Metals

Non-Metals

Metals

Non-Metals

Refracted light

Ignoring sub-surface scattering

Divide into specular and diffuse light

Mathematical model

Radiance

Single Ray

Spectral/RGB

Depends only on light and view directions

f(1, v) **B**idirectional Reflectance **D**istribution θ_o θ_i **F**unction ϕ_i ϕ_o

The Reflectance Equation

$$L_{o}(\boldsymbol{v}) = \int_{\Omega} f(\boldsymbol{l}, \boldsymbol{v}) \otimes L_{i} (\boldsymbol{l}) (\boldsymbol{n} \cdot \boldsymbol{l}) d\omega_{i}$$

Surface Reflection (Specular Term)

Microfacet Theory

The Half Vector

Shadowing and Masking

Multiple Surface Bounces

Microfacet Specular BRDF

$f(\mathbf{l}, \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{h})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$

Fresnel Reflectance

Fresnel Reflectance

steep angle = weak reflection

Example

Fresnel Reflectance

angle of incidence θ_i

Metal			Color
	F_0 (Linear, Float)	F_0 (sRGB,U8)	
Titanium	0.542,0.497,0.449	194,187,179	
Chromium	0.549,0.556,0.554	196,197,196	
Iron	0.562,0.565,0.578	198,198,200	
Nickel	0.660,0.609,0.526	212,205,192	
Platinum	0.673,0.637,0.585	214,209,201	
Copper	0.955,0.638,0.538	250,209,194	
Palladium	0.733,0.697,0.652	222,217,211	
Zinc	0.664,0.824,0.850	213,234,237	
Gold	1.022,0.782,0.344	255,229,158	
Aluminum	0.913,0.922,0.924	245,246,246	
Silver	0.972,0.960,0.915	252,250,245	

Metal			Color
	F_0 (Linear, Float)	F_0 (sRGB,U8)	
Titanium	0.542,0.497,0.449	194,187,179	
Chromium	0.549,0.556,0.554	196,197,196	
Iron	0.562,0.565,0.578	198,198,200	
Nickel	0.660,0.609,0.526	212,205,192	
Platinum	0.673,0.637,0.585	214,209,201	
Copper	0.955,0.638,0.538	250,209,194	
Palladium	0.733,0.697,0.652	222,217,211	
Zinc	0.664,0.824,0.850	213,234,237	
Gold	1.0220.7820.344	255,229,158	
Aluminum	0.913,0.922,0.924	245,246,246	
Silver	0.972,0.960,0.915	252,250,245	

F_0 Values for Dielectrics

Dielectric	F_0 (Linear, Float)	F_0 (sRGB, U8)	Color
Water	0.020	39	
Plastic, Glass	0.040 - 0.045	56-60	
Crystalware, Gems	0.050 - 0.080	63 - 80	
Diamond-like	0.100 - 0.200	90 - 124	

Fresnel Reflectance

The Schlick Approximation to Fresnel

• Fairly accurate, cheap, parameterized by *F*₀

 $F_{\text{Schlick}}(F_0, \mathbf{l}, \mathbf{n}) = F_0 + (1 - F_0)(1 - (\mathbf{l} \cdot \mathbf{n}))^5$

•For microfacet BRDFs (n = h): $F_{\text{Schlick}}(F_0, \mathbf{l}, \mathbf{h}) = F_0 + (1 - F_0)(1 - (\mathbf{l} \cdot \mathbf{h}))^5$

With and without Fresnel reflectance

without fresnel

with fresnel

Normal Distribution Function

$f(\mathbf{l}, \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{h})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$

Different Normal Distribution Functions

$$D_p(\mathbf{m}) = \frac{\alpha_p + 2}{2\pi} (\mathbf{n} \cdot \mathbf{m})^{\alpha_p}$$
$$D_{uabc}(\mathbf{m}) = \frac{1}{(1 + \alpha_{abc1} (1 - (\mathbf{n} \cdot \mathbf{m})))^{\alpha_{abc2}}}$$
$$D_{tr}(\mathbf{m}) = \frac{\alpha_{tr}^2}{\pi ((\mathbf{n} \cdot \mathbf{m})^2 (\alpha_{tr}^2 - 1) + 1)^2}$$
$$D_b(\mathbf{m}) = \frac{1}{\pi \alpha_b^2 (\mathbf{n} \cdot \mathbf{m})^4} e^{-\left(\frac{1 - (\mathbf{n} \cdot \mathbf{m})^2}{\alpha_b^2 (\mathbf{n} \cdot \mathbf{m})^2}\right)}$$

Let
$$D_{BlinnPhong}(h) = K(\underline{n.h})^{\alpha}$$

$$\int_{\Theta} D_{BlinnPhong}(h)(n,h) dh = 1$$

$$\int_{\Theta} K(\underline{n.h})^{\alpha}(n,h) dh = 1$$

$$K \int_{0}^{2\pi} \int_{0}^{\pi} (\underline{n.h})^{\alpha}(n,h) \sin\theta \ d\theta + \int_{\pi/2}^{\pi} (\underline{n.h})^{\alpha}(n,h) \sin\theta \ d\theta) \ d\varphi = 1$$

$$K \int_{0}^{2\pi} (\int_{0}^{\pi/2} (n,h)^{\alpha+1} \sin\theta \ d\theta + \int_{\pi/2}^{\pi} 0 \ (n,h) \sin\theta \ d\theta) \ d\varphi = 1$$

$$K 2\pi \int_{0}^{\pi/2} (\cos\theta)^{\alpha+1} d(-\cos\theta) = 1$$

$$-K 2\pi [\frac{\cos^{\alpha+2}\theta}{\alpha+2}]_{0}^{\pi/2} = 1$$

$$-K 2\pi [\frac{\cos^{\alpha+2}\theta}{\alpha+2}]_{0}^{\pi/2} = 1$$

$$K = \frac{\alpha+2}{2\pi}$$

$$K = \frac{\alpha+2}{2\pi}$$

Blobby highlights: Beckmann, Phong, Blinn-Phong

Sharp highlights: GGX

Normal Distribution Function

- approximates the relative surface area of microfacets aligned to the (halfway) vector
- D(n, h, α) where α indicates surface roughness

Geometry Function

$f(\mathbf{l}, \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{h})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$

Shadowing and Masking from View Direction

$$G_{\rm ct}(\mathbf{l}, \mathbf{v}, \mathbf{h}) = \min\left(1, \frac{2(\mathbf{n} \cdot \mathbf{h})(\mathbf{n} \cdot \mathbf{v})}{(\mathbf{v} \cdot \mathbf{h})}, \frac{2(\mathbf{n} \cdot \mathbf{h})(\mathbf{n} \cdot \mathbf{l})}{(\mathbf{v} \cdot \mathbf{h})}\right)$$
$$\frac{G_{\rm ct}(\mathbf{l}, \mathbf{v}, \mathbf{h})}{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})} \approx \frac{1}{(\mathbf{l} \cdot \mathbf{h})^2} \quad G_{\rm implicit}(\mathbf{l}, \mathbf{v}, \mathbf{m}) = (\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})$$

$$G_{\mathrm{s}}(\mathbf{l}, \mathbf{v}, \mathbf{h}) = G_{\mathrm{s}1}(\mathbf{l}, \mathbf{h})G_{\mathrm{s}1}(\mathbf{v}, \mathbf{h})$$

$$\begin{aligned} G_{\rm ct}(\mathbf{l},\mathbf{v},\mathbf{h}) &= \min\left(1,\frac{2(\mathbf{n}\cdot\mathbf{h})(\mathbf{n}\cdot\mathbf{v})}{(\mathbf{v}\cdot\mathbf{h})},\frac{2(\mathbf{n}\cdot\mathbf{h})(\mathbf{n}\cdot\mathbf{l})}{(\mathbf{v}\cdot\mathbf{h})}\right) \\ \frac{G_{\rm ct}(\mathbf{l},\mathbf{v},\mathbf{h})}{(\mathbf{n}\cdot\mathbf{l})(\mathbf{n}\cdot\mathbf{v})} &\approx \frac{1}{(\mathbf{l}\cdot\mathbf{h})^2} \quad G_{\rm implicit}(\mathbf{l},\mathbf{v},\mathbf{m}) = (\mathbf{n}\cdot\mathbf{l})(\mathbf{n}\cdot\mathbf{v}) \end{aligned}$$

$$G_{\mathrm{s}}(\mathbf{l}, \mathbf{v}, \mathbf{h}) = G_{\mathrm{s}1}(\mathbf{l}, \mathbf{h})G_{\mathrm{s}1}(\mathbf{v}, \mathbf{h})$$

Heitz 2014, Journal of Computer Graphics Techniques Vol. 3, No. 2, 2014

 G_{s1}

$$G_{1-Schlick}(v,h) = \frac{(n.v)}{(n.v)(1-k)+k}$$
, where $k = m\sqrt{\frac{2}{\pi}}$, m is the rms roughness

Schlick method results

α

$$f(\mathbf{l}, \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{h})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

Subsurface Reflection (Diffuse Term)

Lambert

• Constant value (n•l is part of reflectance equation):

$$f_{Lambert}(l, v) = \frac{c_{diff}}{\pi}$$

 c_{diff}: fraction of light reflected, or diffuse color, also called albedo

Textures

- Albedo
- Normal
- Roughness
- Metallic

Example microfacet BRDF

- <u>http://simonstechblog.blogspot.com/2011/12/microfacet-brdf.html</u>
- <u>https://learnopengl.com/PBR/Theory</u>