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Modelowanie procesów biologicznych 

• Model: uproszczony opis świata 
• Za pomocy narzędzi analitycznych (matematyka, języki programistyczne) 



Model Słonecznika 

 

Fibonacci, 137.5  



Tree Model (Fibonacci spiral) 

 



Trunk thickness 

 



Pipe model 

 

Shinozaki et al. 1964 



Pipe model 
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Pipe model 

𝑑𝑝
𝑛 = 𝑑𝑐

𝑛 + 𝑑𝑜𝑝
𝑛  

 
𝑛 ∈ [1,3] 

𝑑𝑜𝑣𝑒𝑟ℎ𝑎𝑛𝑔𝑖𝑛𝑔 𝑝𝑎𝑟𝑒𝑛𝑡 

𝑑𝑐ℎ𝑖𝑙𝑑  𝑑𝑝𝑎𝑟𝑒𝑛𝑡 
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Context-sensitive parametric L-Systems 
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Context-sensitive parametric L-Systems 
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…𝐴 4 𝐵 5 𝐶 6 … 

 
4 + 5 + 6 > 10 

 
𝐵 5 → 𝐸 4.5 𝐹(5.5) 

 



Context-sensitive pipe model 

 

 
 

𝐶 

𝐴 𝐵 

𝐵 𝑑𝑝 > 𝐴 𝑑𝑐 𝐶 𝑑𝑜𝑝  → 𝑑𝑝
𝑛 = 𝑑𝑐

𝑛 + 𝑑𝑜𝑝
𝑛  



Za gęsta struktura drzewiasta 

 



Przestrzeń i L-System 

Objętość kuli ~ r3 
Liczba gałęzi ~ 2r 



Modelowanie drzew 



First 3D tree model 
Hisao Honda 1971 



Recursive tree 

models 

Aono and Kunii 1984 

Reeves and Blau 1985 

Bloomenthal 1985 

Oppenheimer 1986 

de Reffye et al. 1988 

Weber and Penn 1995 

Lintermann and Deussen 1999 

Prusinkiewicz et al. 2001 

Bloomenthal 1985 

Lintermann, Deussen 1999 



Architectural models 
Hallé, Oldeman, Tomlinson 1978 

“Organization of trees reflects 

the precisely controlled genetic 

program which determines 

their development. [...]  

This program is disrupted by 

environmental factors.” 

F. Hallé, R.A.A Oldeman, P.B. Tomlinson:  
Tropical trees and forests: An architectural analysis.  Springer, Heidelberg 1978. 



Architectural models 

do not suffice 
Sachs & Novoplansky 1995, 

Sachs 2004 

“The form of a tree is 

generated by self-organization 

in which alternative branches 

compete with one another, 

following no strict plan or 

pre-pattern.” 

T. Sachs and A. Novoplansky. Tree form: Architectural models do not suffice.  
Israel Journal of Plant Sciences, 43:203-212, 1995. 



Space-based 

models 

Ulam 1962 

Cohen 1967 

Arvo and Kirk 1988 

Greene 1989 

Chiba et al. 1994 

Prusinkiewicz et al. 1994 

Mech and Prusinkiewicz 1996 

Benes 2002 

Rodkaew et al. 2003 

Runions et al. 2007 

 

Greene 1989 

Runions et al. 2007 



Self-organization of 
branches in space 



• Self-organization 
• Process in which global pattern and structure emerge 

from interactions among the lower-level components 
of the system. 

• Database amplification 
• Simple mechanism (economically encoded in the 

genome) can generate complex patterns and 
structures 

• Reason for modelling 
• The emergence of form through self-organization is 

difficult to comprehend without models 

 

S. Camazine et al. (2001): Self-organization in biological systems, 
Princeton University Press. 



Example – Cellular Automaton 

Consider a branching structure… 

S. Ulam (1962): Patterns of growth of figures. 
Proceedings of Symposia on Applied Mathematics 14, 215-224. 



Example 

At the end of each branch there are 3 buds. 



x 

x x 

x 

grow 

don’t grow 

Example 

Rule 1: If there is enough space, grow. 
Rule 2: If there isn’t enough space, don’t grow. 



What structures will emerge? 

Synchronous growth 

Asynchronous growth 



Combining Architectural 
and Self-organizing Models 



Simulation Overview 

calculate bud fate 
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Simulation Overview 

calculate bud fate 



Calculating Environment 

Shadow propagation 
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Branch orientation 
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Calculating Growth Direction 



Structure Information 

Light 

Shedding 

Growth 
direction 

Bud fate 



Model controlled by competition for light only 



Rauh Roux 

Attims 

Massart 

Fagerlind Aubréville Scarrone Stone 

Holttum Cook Corner 

Petit 

Troll Mangenot Leeuwenberg Tomlinson 

Bell Chamberlain Leeuwenberg Schoute 

Prévost Nozeran Koriba 

Architectural models 
Hallé, Oldeman, Tomlinson 1978 

“Organization of trees reflects 

the precisely controlled genetic 

program which determines 

their development. [...]  

This program is disrupted by 

environmental factors.” 

F. Hallé, R.A.A Oldeman, P.B. Tomlinson:  
Tropical trees and forests: An architectural analysis.  Springer, Heidelberg 1978. 



Structure Competition 

Light 

Gravity 

Growth 
rhythms 

Bud fate 

Growth 
direction 

Secondary 
reorientation 

Shedding 

Branch 
vigor 

Information 

Apical 
control 



basipetal signal: light 
(e.g., auxin, sugars) 

acropetal signal: branch vigor 
(e.g. cytokinin, nutrients) 

light growth 

feedback through the root 

Overview: How to compute branch vigor 



Internal Signals as Flux 

Light flux Q 

R. Borchert & H. Honda (1984): Control of development in the bifurcating branch system of Tabebuia rosea. 
Botanical Gazette 145 (2), 184-195. 



Internal Signals as Flux 

Light flux Q Vigor flux v 



Vigor Flux Function  

1   𝑣𝑚 = 𝑣
ʎ𝑄𝑚

ʎ𝑄𝑚 + (1 − ʎ)𝑄𝑙
 

Vigor flux v 

2   𝑣𝑙 = 𝑣
ʎ𝑄𝑙

ʎ𝑄𝑚 + (1 − ʎ)𝑄𝑙
 



𝜆 – Branch lineage 

• Parameter R conceptualizes the relation between parent 
branch and child branch. 

• A high value for parameter R favors parent branches, a 
low value child branches. 

𝜆 = 𝑹 a𝑥2 + 𝑏((𝑦 + 𝑐)2)      𝑎, 𝑏 ∈ 0,1 ;  𝑐 ∈ [−1,1] 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 
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Apical control 

small R              high R 

excurrent forms 

decurrent forms 

no 

apical control 



Gravimorphism 

Amphitony Hypotony (sympodial) Epitony 



𝜆 – Preferential development of lateral axes 
(Gravimorphism) 

• x and y denote the location of a lateral branch 

𝜆 = 𝑅 𝐚𝑥2 + 𝒃((𝑦 + 𝒄)2)      𝑎, 𝑏 ∈ 0,1 ;  𝑐 ∈ [−1,1] 

x 

y 

main branch segment (cylinder) 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 



• x and y denote the location of a lateral branch 

• Parameter a defines preference for buds located at the sides of a 
branch (Amphitony) 

• Parameter b defines preference for buds located at the upper and 
lower surface of a branch  

• Parameter c defines a preference for buds located at either upper or 
lower surface of a branch (Epitony/Hypotony) 

𝜆 = 𝑅 𝐚𝑥2 + 𝒃((𝑦 + 𝒄)2)      𝑎, 𝑏 ∈ 0,1 ;  𝑐 ∈ [−1,1] 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 

𝜆 – Preferential development of lateral axes 
(Gravimorphism) 



orthotropism 
+  

hypotony (high c) 

orthotropism 
+  

epitony (low c) 

plagiotropism 
+  

amphitony (high a) 

Gravimorphism - Examples 



Branch Bending 

• Elasticity theory – branches as elastic circular rods composed of isotropic and 
homogenous material (no stretching) 

• Solve static equilibrium of gravity and forces resulting from growth 

• Torque–based model 

J. Taylor-Hell (2005): Incorporating Biomechanics into Architectural Tree Models. 
Proceedings of the XVIII Brazilian Symposium on Computer Graphics and Image Processing. 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 



Branch Bending - Animation 



Growth Rhythms 

 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 
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Branch 
lineage Gravity 

Growth 
rhythms Bud fate 



Proleptic growth 

 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 



Growth Rhythms 

• Shoot growth determined by shoot to root relation (Borchert 1973) 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 
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Growth Rhythms 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 

• Shoot growth determined by shoot to root relation (Borchert 1973) 

• Root flux Rtotal computed as a function of time 

• If Qtotal > Rtotal  stop growth (gradually) 
• Decrease length of branch segments 

• Increase bud activation threshold 

• Increase branch shedding threshold 



Growth Rhythms 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 

• Shoot growth determined by shoot to root relation (Borchert 1973) 

• Root flux Rtotal computed as a function of time 

• If Qtotal > Rtotal  stop growth (gradually) 
• Decrease length of branch segments 

• Increase bud activation threshold 

• Increase branch shedding threshold  

• If Qtotal ≤ Rtotal  grow 
• Increase length of branch segments until maximum 

• Decrease bud activation until minimum 

• Decrease branch shedding threshold 



Growth Rhythms - Example 

Root and shoot flux development in continuous example and rhythmic example 

rhythmic 

continuous 

root flux represented by dotted line 
shoot flux represented by solid line 
 



Growth Rhythms - Close up 

Continuous development Rhythmic development 



Bud Fate – Dormant, Flowering and Active 

• Buds which satisfy the inequality 
flux < flowering threshold become 
a flower and are removed from the 
simulation 

• Threshold affects only active buds 

 Active bud 

Dormant bud 

Before calculating flux 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 



Bud Fate – Dormant, Flowering and Active 

• Buds which satisfy the inequality 
flux < flowering threshold become 
a flower and are removed from the 
simulation 

• Threshold affects only active buds 

 Active bud 

Dormant bud 

Before calculating flux After calculating flux 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 



Bud Fate – Dormant, Flowering and Active 

• Buds which satisfy the inequality 
flux < flowering threshold become 
a flower and are removed from the 
simulation 

• Threshold affects only active buds 

 Active bud 

Dormant bud 

Before calculating flux After calculating flux After growth phase 

Branch 
lineage Gravity 

Growth 
rhythms Bud fate 



Flowering and Architectural Models 

Flowering threshold 

(pronounced parent child bias) 



Flowering and Architectural Models 

Rauh Scarrone Leeuwenberg 

Flowering threshold 

(pronounced parent child bias) 



Plagiotropy and Architectural Models 

Plagiotropy threshold 

(pronounced parent child bias) 

Rauh 



Plagiotropy and Architectural Models 

Plagiotropy threshold 

(pronounced parent child bias) 

Rauh Massart 



Plagiotropy and Architectural Models 

Plagiotropy threshold 

(pronounced parent child bias) 

Rauh Massart Troll 



Rauh 

Massart 



Morphospace containing 
the Architectural Models 
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Bud Suppression x Flowering 
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Hypotony x Flowering 

Leeuwenberg 

Scarrone 

Rauh 



Hypotony x Flowering 
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Hypotony x Flowering 

Leeuwenberg 

Scarrone 

Rauh 

Aubreville 
Fagerlind 



Hypotony x Flowering 

Leeuwenberg (Frangipani) 

Scarrone 

Rauh 

Aubreville 
Fagerlind 

Leeuwenberg (Tabebuia rosea) 



 20 Architectural Models are captured with the 
growth model 

 Self-organization is fundamental for 
understanding plant architecture 

 Highlights the key plant processes to describe a 
variety of different tree forms, presented in a 
mechanistic model of development 

 

 

 

 

Observations 



Comparison to real trees 

Tabebuia rosea (Model of Leeuwenberg) 
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Comparison to real trees 
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Phellodendron chinense (Model of Scarrone) 



Comparison to real trees 

Tabebuia rosea (Model of Leeuwenberg) 

Sequoia sempervirens (Model of Massart) 

Delonix regia (Model of Troll) 

Phellodendron chinense (Model of Scarrone) 







Modeling with Differential Equations 



Differential equation 

• Equations of the form 
𝑑𝑥(𝑡)

𝑑𝑡
 =  𝑓 (𝑥(𝑡), 𝑡) 

• when x is a 1D function we call the above an ordinary 
differential equation otherwise a partial differential equation 

•
𝑑𝑥(𝑡)

𝑑𝑡
 or 

𝑑𝑥

𝑑𝑡
 or 𝑥′(𝑡) is read as “the rate of change of x over t” 

• f is the function that computes the derivative of x with respect 
to t 

• The solution to a differential equation is a function x that 
satisfies the equation 
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Geometric Interpretation (1st order ODE) 

t0 

x0 
(t0, x0) 

𝑥 (𝑡)  

𝑥′(𝑡)  

1 

𝑓 (𝑥(𝑡), 𝑡) 

An ODE is a vector field 

The solution to an ODE 
is a curve which is 
tangential at all points, 
(integral curve)  



Bacterial Growth 

 

1 2 4 8 16 



Modeling with differential equations 

• P = population, t = time(days) 

•
1

𝑃

𝑑𝑃

𝑑𝑡
= 𝐾 

•
1

𝑃
𝑑𝑃 = 𝐾𝑑𝑡 

•  
1

𝑃
𝑑𝑃 =  𝐾𝑑𝑡 

• 𝑙𝑛 𝑃 = 𝐾𝑡 + 𝐶1 

• 𝑃 = 𝑒𝐾𝑡+𝐶1 = 𝑒𝐾𝑡𝑒𝐶1 = 𝐶𝑒𝐾𝑡 
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Modeling with differential equations 

• P = population, t = time(days) 

•
𝑑𝑃

𝑑𝑡
= 𝐾𝑃 

•
1

𝑃

𝑑𝑃

𝑑𝑡
= 𝐾 

•
1

𝑃
𝑑𝑃 = 𝐾𝑑𝑡 

•  
1

𝑃
𝑑𝑃 =  𝐾𝑑𝑡 

• 𝑙𝑛 𝑃 = 𝐾𝑡 + 𝐶1 

• 𝑃 = 𝑒𝐾𝑡+𝐶1 = 𝑒𝐾𝑡𝑒𝐶1 = 𝐶𝑒𝐾𝑡 

 

 

 



Modeling with differential equations 

• P = population, t = time(days) 

•
𝑑𝑃

𝑑𝑡
= 𝐾𝑃 

•
1

𝑃

𝑑𝑃

𝑑𝑡
= 𝐾 

•
1

𝑃
𝑑𝑃 = 𝐾𝑑𝑡 

•  
1

𝑃
𝑑𝑃 =  𝐾𝑑𝑡 

• 𝑙𝑛 𝑃 = 𝐾𝑡 + 𝐶1 

• 𝑃 = 𝑒𝐾𝑡+𝐶1 = 𝑒𝐾𝑡𝑒𝐶1 = 𝐶𝑒𝐾𝑡 

 

 

 



Modeling with differential equations 

• P = population, t = time(days) 

•
𝑑𝑃

𝑑𝑡
= 𝐾𝑃 

•
1

𝑃

𝑑𝑃

𝑑𝑡
= 𝐾 

•
1

𝑃
𝑑𝑃 = 𝐾𝑑𝑡 

•  
1

𝑃
𝑑𝑃 =  𝐾𝑑𝑡 

• 𝑙𝑛 𝑃 = 𝐾𝑡 + 𝐶1 

• 𝑃 = 𝑒𝐾𝑡+𝐶1 = 𝑒𝐾𝑡𝑒𝐶1 = 𝐶𝑒𝐾𝑡 

 

 

 



Modeling with differential equations 

• P = population, t = time(days) 

•
𝑑𝑃

𝑑𝑡
= 𝐾𝑃 

•
1

𝑃

𝑑𝑃

𝑑𝑡
= 𝐾 

•
1

𝑃
𝑑𝑃 = 𝐾𝑑𝑡 

•  
1

𝑃
𝑑𝑃 =  𝐾𝑑𝑡 

• 𝑙𝑛 𝑃 = 𝐾𝑡 + 𝐶1 

• 𝑃 = 𝑒𝐾𝑡+𝐶1 = 𝑒𝐾𝑡𝑒𝐶1 = 𝐶𝑒𝐾𝑡 

 

 

 



Modeling with differential equations 

• P = population, t = time(days) 

•
𝑑𝑃

𝑑𝑡
= 𝐾𝑃 

•
1

𝑃

𝑑𝑃

𝑑𝑡
= 𝐾 

•
1

𝑃
𝑑𝑃 = 𝐾𝑑𝑡 

•  
1

𝑃
𝑑𝑃 =  𝐾𝑑𝑡 

• 𝑙𝑛 𝑃 = 𝐾𝑡 + 𝐶1 

• 𝑃 = 𝑒𝐾𝑡+𝐶1 = 𝑒𝐾𝑡𝑒𝐶1 = 𝐶𝑒𝐾𝑡 

 

 

 



Modeling with differential equations 

• P = population, t = time(days) 

•
𝑑𝑃

𝑑𝑡
= 𝐾𝑃 

•
1

𝑃

𝑑𝑃

𝑑𝑡
= 𝐾 

•
1

𝑃
𝑑𝑃 = 𝐾𝑑𝑡 

•  
1

𝑃
𝑑𝑃 =  𝐾𝑑𝑡 

• 𝑙𝑛 𝑃 = 𝐾𝑡 + 𝐶1 

• 𝑃 = 𝑒𝐾𝑡+𝐶1 = 𝑒𝐾𝑡𝑒𝐶1 = 𝐶𝑒𝐾𝑡 

 

 

 



Modeling with differential equations 

• P = population, t = time(days) 

•
𝑑𝑃

𝑑𝑡
= 𝐾𝑃 

•
1

𝑃

𝑑𝑃

𝑑𝑡
= 𝐾 

•
1

𝑃
𝑑𝑃 = 𝐾𝑑𝑡 

•  
1

𝑃
𝑑𝑃 =  𝐾𝑑𝑡 

• 𝑙𝑛 𝑃 = 𝐾𝑡 + 𝐶1 

• 𝑃 = 𝑒𝐾𝑡+𝐶1 = 𝑒𝐾𝑡𝑒𝐶1 = 𝐶𝑒𝐾𝑡 

 

 

 



Exponential Growth 

• P = population, t = time(days) 

•
𝑑𝑃

𝑑𝑡
= 𝐾𝑃 

•
1

𝑃

𝑑𝑃

𝑑𝑡
= 𝐾 

•
1

𝑃
𝑑𝑃 = 𝐾𝑑𝑡 

•  
1

𝑃
𝑑𝑃 =  𝐾𝑑𝑡 

• 𝑙𝑛 𝑃 = 𝐾𝑡 + 𝐶1 

• 𝑃 = 𝑒𝐾𝑡+𝐶1 = 𝑒𝐾𝑡𝑒𝐶1 = 𝐶𝑒𝐾𝑡 

 

 

 

𝑃(𝑡) = 𝐶𝑒𝐾𝑡 
SOLUTION 



Verification 

𝑃′ 𝑡 = 𝐶𝑒𝐾𝑡 ′ = 𝐾𝐶𝑒𝐾𝑡 = 𝐾𝑃 𝑡 = 𝐾𝑃 

 



Verification 

𝑃′ 𝑡 = 𝐶𝑒𝐾𝑡 ′ = 𝐾𝐶𝑒𝐾𝑡 = 𝐾𝑃 𝑡 = 𝐾𝑃 

 



Verification 

𝑃′ 𝑡 = 𝐶𝑒𝐾𝑡 ′ = 𝐾𝐶𝑒𝐾𝑡 = 𝐾𝑃 𝑡 = 𝐾𝑃 

 



Verification 

𝑃′ 𝑡 = 𝐶𝑒𝐾𝑡 ′ = 𝐾𝐶𝑒𝐾𝑡 = 𝐾𝑃 𝑡 = 𝐾𝑃 

 



Example 

• 𝑡 = 0  𝑃 = 1 100 = 𝐶𝑒0 = 𝐶 

• 𝑡 = 80  𝑃 = 16 200 = 100𝑒50𝐾 = 𝐶 

    2 = 𝑒50𝐾 

•     𝑙𝑛2 = 50𝐾 

•     𝐾 =
𝑙𝑛2

50
 

 

 

 

 

 

𝑃 = 𝐶𝑒𝐾𝑡 



Example 

• 𝑡 = 0  𝑃 = 1 1 = 𝐶𝑒0 = 𝐶 

• 𝑡 = 80  𝑃 = 16 200 = 100𝑒50𝐾 = 𝐶 

•     2 = 𝑒50𝐾 

•     𝑙𝑛2 = 50𝐾 

•     𝐾 =
𝑙𝑛2

50
 

 

 

 

 

 

𝑃 = 𝐶𝑒𝐾𝑡 



Example 

• 𝑡 = 0  𝑃 = 1 1 = 𝐶𝑒0 = 𝐶 

• 𝑡 = 80  𝑃 = 16 200 = 100𝑒50𝐾 = 𝐶 

•     2 = 𝑒50𝐾 

•     𝑙𝑛2 = 50𝐾 

•     𝐾 =
𝑙𝑛2

50
 

 

 

 

 

 

𝑃 = 𝐶𝑒𝐾𝑡 



Example 

• 𝑡 = 0  𝑃 = 1 1 = 𝐶𝑒0 = 𝐶 

• 𝑡 = 80  𝑃 = 16 16 = 𝑒80𝐾 = 𝐶 

•     2 = 𝑒50𝐾 

•     𝑙𝑛2 = 50𝐾 

•     𝐾 =
𝑙𝑛2

50
 

 

 

 

 

 

𝑃 = 𝐶𝑒𝐾𝑡 



Example 

• 𝑡 = 0  𝑃 = 1 1 = 𝐶𝑒0 = 𝐶 

• 𝑡 = 80  𝑃 = 16 16 = 𝑒80𝐾 

•     𝑙𝑛16 = 80𝐾  

    𝑙𝑛2 = 50𝐾 

•     𝐾 =
𝑙𝑛2

50
 

 

 

 

 

 

𝑃 = 𝐶𝑒𝐾𝑡 



Example 

• 𝑡 = 0  𝑃 = 1 1 = 𝐶𝑒0 = 𝐶 

• 𝑡 = 80  𝑃 = 16 16 = 𝑒80𝐾 

•     𝑙𝑛16 = 80𝐾  

•     𝐾 =
𝑙𝑛16

80
 

 

 

 

 

 

𝑃 = 𝐶𝑒𝐾𝑡 



Example 

• 𝑡 = 0  𝑃 = 1 1 = 𝐶𝑒0 = 𝐶 

• 𝑡 = 80  𝑃 = 16 16 = 𝑒80𝐾 

•     𝑙𝑛16 = 80𝐾  

•     𝐾 =
𝑙𝑛16

80
 

 

 

 

 

 

𝑃 = 𝐶𝑒𝐾𝑡 

𝑃 𝑡 = 𝑒
𝑙𝑛16
80

𝑡 



Example 

• 𝑡 = 0  𝑃 = 1 1 = 𝐶𝑒0 = 𝐶 

• 𝑡 = 80  𝑃 = 16 16 = 𝑒80𝐾 

•     𝑙𝑛16 = 80𝐾  

•     𝐾 =
𝑙𝑛16

80
 

 

 

 

 

 

𝑃 = 𝐶𝑒𝐾𝑡 

𝑃 𝑡 = 𝑒
𝑙𝑛16
80

𝑡 

C  Population at time 0 



Example 

• 𝑡 = 0  𝑃 = 1 1 = 𝐶𝑒0 = 𝐶 

• 𝑡 = 80  𝑃 = 16 16 = 𝑒80𝐾 

•     𝑙𝑛16 = 80𝐾  

•     𝐾 =
𝑙𝑛16

80
 

 

 

 

 

 

𝑃 = 𝐶𝑒𝐾𝑡 

𝑃 𝑡 = 𝑒
𝑙𝑛16
80

𝑡 

C  Population at time 0 

K  coefficient of growth 



Example 

• 𝑡 = 0  𝑃 = 1 1 = 𝐶𝑒0 = 𝐶 

• 𝑡 = 80  𝑃 = 16 16 = 𝑒80𝐾 

•     𝑙𝑛16 = 80𝐾  

•     𝐾 =
𝑙𝑛16

80
 

 

 

 

 

 

𝑃 = 𝐶𝑒𝐾𝑡 

𝑃 𝑡 = 𝑒
𝑙𝑛16
80

𝑡 

C  Population at time 0 

K  coefficient of growth (unit is 1/t) 



Mathematical Model of e.coli Growth 

*also used to compute compound interest rates 



Population growth N relative to food C 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

Population limited by food 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

Population limited by food 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

Population limited by food 

K is a function of how 
food is converted to 
growth 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

Population limited by food 

C(t) is food 
concentration 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = 𝐶 𝑁 

Population limited by food 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝑁′ 𝐶 𝑁 

Population limited by food 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝑁′ 𝐶 𝑁 

Population limited by food 𝛼: constant describing 
consumption of food by 
each new bacterium 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

Population limited by food 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

If 𝐾 𝐶 = 𝑘𝐶 
Population limited by food 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

 

 

 

• 𝐶′ = −𝛼𝑁′ 

 

If 𝐾 𝐶 = 𝑘𝐶 
Population limited by food 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

 

 

 

• 𝐶′ = −𝛼𝑁′ 

• 𝐶 = −𝛼𝑁 + 𝐶0 

• 𝑁′ = 𝑘 𝐶0 − 𝛼𝑁 𝑁 

If 𝐾 𝐶 = 𝑘𝐶 
Population limited by food 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

 

 

 

• 𝐶′ = −𝛼𝑁′ 

• 𝐶 = −𝛼𝑁 + 𝐶0 

• 𝑁′ = 𝑘 𝐶0 − 𝛼𝑁 𝑁 

If 𝐾 𝐶 = 𝑘𝐶 
Population limited by food 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

 

 

 

• 𝐶′ = −𝛼𝑁′ 

• 𝐶 = −𝛼𝑁 + 𝐶0 

• 𝑁′ = 𝑘 𝐶0 − 𝛼𝑁 𝑁 

If 𝐾 𝐶 = 𝑘𝐶 



Population growth N relative to food C 

• 𝑁′ = 𝐾 𝐶 𝑁 

• 𝐶′ = −𝛼𝐾 𝐶 𝑁 

 

 

 

• 𝐶′ = −𝛼𝑁′ 

• 𝐶 = −𝛼𝑁 + 𝐶0 

• 𝑁′ = 𝑘 𝐶0 − 𝛼𝑁 𝑁 

If 𝐾 𝐶 = 𝑘𝐶 

For N ~ C0/𝜶 



Vector Field 



Logistic Growth Function 

𝑁(𝑡) =
𝑁0𝐵

𝑁0 + (𝐵 − 𝑁0)𝑒
−𝑟𝑡

 

𝑁0 = 𝑁 0 , 𝐵 =
𝐶0
𝛼
, 𝑟 = 𝑘𝐶0 



Numerical solutions 

• There is usually no closed form solution for a system of 
differential equations, unless the problem is really simple 

• We look therefore for an approximate solution 



Field of derivatives 

• We know how to compute f 

• This means that we can compute the vector/slope field of x 



Vector/Slope field 



Forward Euler Numerical Solution 

dt = 0.1 dt = 3 dt = 10 

Follow the vector field: x[n+1] = x[n] + dt*f(x[n], t[n]) 



Modeling Process 

Observation 

Hypothesis 

Differential equations 

Solution 



Hares and Lynxes Population Growth Model 



Predator – Prey Relation 

Hares Lynxes 



Hares and Lynxes Population Growth Model 

• Population y (lynxes) changes in time due to reproduction 
limited by population x (hares) 𝑐𝑥𝑦  

• Populacja x zmienia się w czasie przez śmierć 
𝑑𝑦

𝑑𝑡
= 𝑐𝑥𝑦 − 𝑑𝑦  

 



Hares and Lynxes Population Growth Model 

• Population y (lynxes) changes in time due to reproduction 
limited by population x (hares)  

      

 

     
𝑑𝑦

𝑑𝑡
= 𝑑𝑥  

• Populacja x zmienia się w czasie przez śmierć 
𝑑𝑦

𝑑𝑡
= 𝑐𝑥𝑦 − 𝑑𝑦  

 



Hares and Lynxes Population Growth Model 

• Population y (lynxes) changes in time due to reproduction 
limited by population x (hares) 

 

 

     
𝑑𝑦

𝑑𝑡
= 𝑑𝑥𝑦  

• Populacja x zmienia się w czasie przez śmierć 
𝑑𝑦

𝑑𝑡
= 𝑐𝑥𝑦 − 𝑑𝑦  

 



Hares and Lynxes Population Growth Model 

• Population y (lynxes) changes in time due to reproduction 
limited by population x (hares) 

• Some die due to age   

 
𝑑𝑦

𝑑𝑡
= 𝑑𝑥𝑦 

• Populacja x zmienia się w czasie przez śmierć 
𝑑𝑦

𝑑𝑡
= 𝑐𝑥𝑦 − 𝑑𝑦  

 



Hares and Lynxes Population Growth Model 

• Population y (lynxes) changes in time due to reproduction 
limited by population x (hares) 

• Some die due to age   

 
𝑑𝑦

𝑑𝑡
= 𝑑𝑥𝑦 − 𝑐𝑦 

• Populacja x zmienia się w czasie przez śmierć 
𝑑𝑦

𝑑𝑡
= 𝑐𝑥𝑦 − 𝑑𝑦  

 



Hares and Lynxes Population Growth Model 

Lynxes:  
𝑑𝑦

𝑑𝑡
= 𝑑𝑥𝑦 − 𝑐𝑦 

Hares:  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦  

 



Hares and Lynxes Population Growth Model 

Lynxes:  
𝑑𝑦

𝑑𝑡
= 𝑑𝑥𝑦 − 𝑐𝑦 

Hares:  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥𝑥 − 𝑏𝑥𝑦  

 



Hares and Lynxes Population Growth Model 

Lynxes:  
𝑑𝑦

𝑑𝑡
= 𝑑𝑥𝑦 − 𝑐𝑦 

Hares:  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦 − 𝑏𝑥𝑦  

 



Hares and Lynxes Population Growth Model 

Lynxes:  
𝑑𝑦

𝑑𝑡
= 𝑑𝑥𝑦 − 𝑐𝑦 

Hares:  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦 − 𝑏𝑥𝑦  

 
Multiply by lynxes to reflect 
effects of predation 



Example Model Solution 

Hares 

Lynxes 

Lynxes:  
𝑑𝑦

𝑑𝑡
= 𝑑𝑥𝑦 − 𝑐𝑦 

 

Hares:  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦 



Real World 

 



Lotka-Volterra Predator-Prey Model 


