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Topics

* Numpy/Scipy
— Linear Algebra
— Functional Analysis

* Purpose

— Understand basics of data science tools



Linear algebra (numpy.linalg)

Matrix and vector products

dot(a, b[, out])
linalg.multi_dot(arrays)

vdot(a, b)

inner(a, b)
outer(a, b[, out])

matmul(x1, x2, /[, out, casting, order, ...])
tensordot(a, b[, axes])

einsum(subscripts, *operands[, out, dtype, ...])

einsum_path(subscripts, *operands|[, optimize])

linalg.matrix_power(a, n)

kron(a, b)

Dot product of two arrays.
Compute the dot product of two or
more arrays in a single function call,
while automatically selecting the
fastest evaluation order.

Return the dot product of two
vectors.

Inner product of two arrays.
Compute the outer product of two
vectors.

Matrix product of two arrays.
Compute tensor dot product along
specified axes for arrays >= 1-D.
Evaluates the Einstein summation
convention on the operands.
Evaluates the lowest cost contraction
order for an einsum expression by
considering the creation of
intermediate arrays.

Raise a square matrix to the (integer)
power n.

Kronecker product of two arrays.


https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

* Physics
* Computer science
 Mathematics
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Linear Equations Example

* You run 0.2 km every minute.

* The horse runs 0.5 km every minute, but it takes 6 minutes to
saddle the horse.
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d = 0.5(t-6)
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* You run 0.2 km every minute.
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Linear Equations Example

* You run 0.2 km every minute.

* The horse runs 0.5 km every minute, but it takes 6 minutes to

saddle the horse.

* We can make two equations (d=distance in km, t=time in

minutes)
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d = 0.5(t-6) = 0.5t-3

d

7

solution horse

N\

you

A 4
=+



Linear Systems of Equations

a,x,+a.,x,+...+a, x, =b,

In""n
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Linear Systems of Equations
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Example Transformations
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Ax =Db?
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numpy.linalg.inv

numpy.linalg.inv(s) [source]
Compute the (multiplicative) inverse of a matrix.

Given a square matrix &, return the matrix ainvsatisfying dot(a, ainv) =
dot{ainv, a) = eye(a.shapef[@]).

>»> a = np.array([[[1., 2.], [3., 4.1], [[1; 3], [3, 511])
»»> inv(a)
array([[[-2. , 1. 1,

[ 1.5, -@.5]],

[['5' » 2. ],

[ 3., -1. 11D


http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html

Measuring the area changes of transformations

((1) (1)) — areal
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Measuring the area changes of transformations
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This is the “determinant” of a matrix



numpy.linalg.det

numpy.linalg.det(a)
Compute the determinant of an array.

Parameters: a (.. M M)array_like

Input array to compute determinants for.

Returns: det : (...) array_like
Determinant of a.

»»>» a = np.array([[1, 2], [3, 4]])
»»> np.linalg.det{a)
-2.8

[source]


http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.linalg.det.html
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.linalg.det.html

Eigenvalues and Eigenvectors
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Eigenvalues and Eigenvectors
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Eigenvalues and Eigenvectors
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numpy.linalg.eig

numpy.linalg.eig(s)

Wartosci i wektory wlasne

[source]

Compute the eigenvalues and right eigenvectors of a square array.

v = LA.eig(np.diag((1, 2, 3)))

W

array([ 1., 2., 3.])
array([[

1., ©., 8.],
[ e., 1., @a.],
[ ., o., 1.]11)

335


http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

numpy.linalg.matrix_rank

numpy.linalg.matrix_rank(w, tol=none) [source]

Return matrix rank of array using VD method
Rank of the array is the number of VD singular values of the array that are greater than tol,

Parameters: M :{{M) (M NI} array like
array of <=2 dimensions
tol ; {None, float), optional
thresheold below which SWD values are considered zero. If tol is Mone, and 5 is an array with
singular values for M, and eps is the epsilon value for datatype of 5, then tolis setto S.max() *
max(M.shape) * eps.
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Matrix Rank Example

* |f we know that
« 2 apples and 3 bananas cost S7
* 3 apples and 3 bananas cost S9

* Then we can figure out the extra apple must cost $2, and so the bananas
costs S1 each. There are 2 variables and the rank is also 2.



Matrix Rank Example

If we know that
« 2 apples and 3 bananas cost S7
* 3 apples and 3 bananas cost S9

Then we can figure out the extra apple must cost $2, and so the bananas
costs S1 each. There are 2 variables and the rank is also 2.
But if we only know that
e 2 apples and 3 bananas cost S7
* 4 apples and 6 bananas cost $14
We can't go any further because the second row of data is just twice the

first and gives us no new information. There are 2 variables and the rank is
only 1.



Conditioning

e |f a matrix has full rank there exists a solution.

e But there could be an approximate solution due to errors
induced by floating point arithmetic.

* Conditioning number measures how well a given matrix A is
conditioned

cond (A) =||A"'||-|A]




numpy.linalg.cond

numpy.linalz. cond (x, p=Nomne) [source]

Compute the condition number of a matrix.

This function is capable of returning the condition number using one of seven different norms, depending on the value of
@ (ses Parameters below).

Parameters: x:{.. M N} array like
The matrix whose condition number is sought.
p:{None 1. -1, 2, -2 inf, -inf. fro’l optional
Order of the norm:
#] norm for matrices
Mone 2-norm, computed directly using the =swo
fro"  Frobenius norm
inf max(surn{abs(x), axis=1))
-inf min{sumiabs{x), axis=1))

1 max(sumiabs{x), axis=0))

-1 min{sumiabs{x), axis=0))

2 2-norm (largest sing. value)
-2 smallest singular value

inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares norm.
Returns: c : {float, inf}
The condition number of the matrix. May be infinite.



Solving Linear Systems

 Direct methods

— Transforms the equations into equivalent equations that have the
same solution but are easier to solve

* |terative methods
— Start with an initial result near the solution and iteratively improve it

— Usually, they are slower but have advantages if matrices are very big
or sparse



Direct Methods

e Gauss elimination
* LU decomposition
e Gauss-Jordan elimination



scipy.linalg.lu

scipy.linalg.lu[a. permute_|=False, overwrite_a=False, check_finite=True) [source]

Compute pivoted LU decompostion of a matrix.

The decomposition is:
A=PF LU

where P is 3 permutation matrix, L lower triangular with unit diagonal elements, and U upper triangular.

Parameters: a: (M N orroy like
Array to decompose
permute_| ; boo!
Perform the multiplication P*L (Default: do not permute)
overwrite_a: boo!
Whether to overwrite data in a (may improve performance)
check_finite : boolean, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a
performance gain, but may result in problems (crashes, non-termination) if the inputs do contain
infinities or NaMs.
Returns: (If permute_| == False)
p: (M, M) ndarray
Permutation matrix
| : (M. K) ndarray
Lower triangular or trapezoidal matrix with unit diagonal. K= min(M, M)
u: {K, M) ndarray
Upper triangular or trapezoidal matrix
(If permute_|l == True)
pl: (M. K) ndarray
Permuted L matrix. K= min{M, )
u: {K N ndarray
Upper triangular or trapezoidal matrix



numpy.linalg.solve

numpy.linalg.solve(a, b) [source]
Solve a linear matrix equation, or system of linear scalar equations.

Computes the “exact” solution, x, of the well-determined, i.e., full rank, linear
matrix equation ax = b

Examples

Solve the system of equations 3 * x8 + x1 = 9and x@ + 2 * x1 = &

»»>» a = np.array([[3,1], [1,2]])
»»> b = np.array([9,8])

»»> ¥ = np.linalg.solve(a, b)
222 M

array([ 2., 3.])

http://www.netlib.org/lapack/lug/node37.html#tseccomp

333


http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.linalg.solve.html
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.linalg.solve.html
http://www.netlib.org/lapack/lug/node37.html#seccomp

Iterative Methods

* Gauss-Seidel
* Jacobi
* Huge literature on this topic



Sparse linear algebra (scipy.sparse.linalg)f

Solving linear problems

Direct metheds for linear equation systems:

spselvelA, b, permc_spec, use_umfpack]) Solve the sparse linear system Ax=b, where b
may be a vector or 3 matrix

factorized(A) Return a fuction for solving a sparse linear
system, with A pre-factorized.

Iterative methods for linear equation systems:

bicg(a, bl, 0, tol, maxiter, xtype, M, ...]) Use BlConjugate Gradient iteration to solve
Ax=Dh

bicgstab(A, b[. 0. tol, maxiter, xtype. M, ...])}  Use BlConjugate Gradient STAEBIlized
iteration to solve Ax="h

cg(A, bl %0, tol, maxiter, xtype, M, callback])  Use Conjugate Gradient iteration to solve A
x=h

cgs(A, b, x0, tol, maxiter, xtype, M, callback]) Use Conjugate Gradient Squared iteration
tosolve Ax=h

gmres(A, b[, x0, tol, restart, maxiter, ...]) Use Generalized Minimal RESidual iteration
fosolve Ax=h,

lgmres(A, bl %0, tol, maxiter, M, ...]) Solve a matrix equation using the LGMRES
algorithm.

minres(a, bl x0, shift, tol, maxiter, ...]) Use MIMNimum RESidual iteration to solve
Ax=b

gmrif, b[, %0, tol, maxiter, xtype, M1, M2, ...]} Use Quasi-Minimal Residual iteration to
solve Ax="h

Iterative methods for least-squares problems:

Isgr(A, b, damp, atol, btal, conlim, ...])  Find the least-squares solution to a large, sparse,
linear system of equations.

Ismr{A, b[, damp, atol, btol, conlim, ...]) Iterative solver for least-squares problems.



Solving Linear Systems of Equations

* n=m:can have an exact solution



Solving Linear Systems of Equations

* n=m: can have an exact solution
* n<m: less equations than unknowns?
* m > n: more equations than unknowns?



1 Equation




2 Equations
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Approximation?




Approximation?

Best approximation




Least-squares

Minimize the squared
error

Best approximation




numpy.linalg.lstsq

numpy.linalg.Istsq(s, b, rcond=-1) [source]
Return the least-squares solution to a linear matrix equation.

Solves the equation a x = b by computing a vector x that minimizes the Euclidean
2-norm /[ b-ax /72 The equation may be under-, well-, or over- determined
(i.e., the number of linearly independent rows of @ can be less than, equal to, or
greater than its number of linearly independent columns). If 3 is square and of full
rank, then x(but for round-off error) is the “exact” solution of the equation.


http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.lstsq.html
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numpy.vstack

numpy. vstack (tup) [source]

Stack arrays in sequence vertically {row wise).

Take a sequence of arrays and stack them vertically to make a single array. Rebuild arrays divided by wsplit .

This function continues to be supported for backward compatibility, but you should prefer np.concatenate or np.stack .
The np.stack function was added in NumPy 1.10.

Parameters: tup:sequence of ndarrays
Tuple containing arrays to be stacked. The arrays must have the same shape along all but the first
axis.

Returns: stacked : ndarray
The array formed by stacking the given arrays.

*»»» a = np.array([1l, 2, 31)
*»»» b = np.array([2, 3, 4]}
»»» np.vstack(({a,b))
array([[1, 2, 3],

[z, 3, 411}

»»» a = np.array([[1], [2]1, [3]1)
*»» b = np.array([[2], [3], [411)
»»» np.vstack(({a,b))
array([[1],

[21,

[31.

[21,

[31,

[411)



Root finding: : f(x) =0

* if f(x) =ax?*+ bx + c then:

—b + Vb2 — 4ac
2a

X12 =

* For many functions an analytical solution cannot be found



Bisection method

* Find points a and b such that f(a)f(b) < ©
* Calculatec = (a+b)/2,ifb-c < &:end
e ff(a)f(c) < ®@ : b = c,else:ta = ¢
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Bisection method

* Find points aand b such that f(a)f(b) < ©
* Calculatec = (a+b)/2,ifb-c < &:end
e ff(a)f(c) < ®@ : b = c,else:ta = ¢
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Taylor Series

: : 1
Taylors theorem: there exists b€[x,a], such that f(x) = f(a) + f'(a)(z — a) + §f”(ﬁ) (z — a)?



Taylor Series
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Taylor Series
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Taylor Series




Taylor Series




Taylor series 2 Newton’s method
* f(2) = f(x0) + (2 — x0)f (x0) + 7 (z — x0)f"(co)

* Because f(z) = 0 assuming that |z — x| is small we
approximate:

0= f(x0) + (z = x0)f" (x0)

f(xo) _
Frixg) 1

which resultsin: z = xy —



Newton’s method

Iteration:

f (Xn)

le+1 — xn fl(x )
n




Newton’s method

f(xo)




Newton’s method

f(xo)




Newton’s method

f(X,)




Newton’s method




Scipy.optimize

Root finding

Scalar functions

root_scalar(f[, args, method, bracket, ...]) Find a root of a scalar function.

brentq(f, a, b[, args, xtol, rtol, maxiter, ...]) Find a root of a function in a bracketing interval using Brent's method.

brenth(f, a, b[, args, xtol, rtol, maxiter, ...]) Find a root of a function in a bracketing interval using Brent's method
with hyperbolic extrapolation.

ridder(f, a, b[, args, xtol, rtol, maxiter, ...])  Find a root of a function in an interval using Ridder's method.

bisect(f, a, b[, args, xtol, rtol, maxiter, ...])  Find root of a function within an interval using bisection.

newton(func, x0[, fprime, args, tol, ...]) Find a zero of a real or complex function using the Newton-Raphson (or
secant or Halley's) method.
toms748(f, a, b[, args, k, xtol, rtol, ...]) Find a zero using TOMS Algorithm 748 method.

RootResults(root, iterations, ...) Represents the root finding result.


https://docs.scipy.org/doc/scipy/reference/optimize.html#root-finding

Exercise

Visualize the following system of equations as a 2D plot:

2x,+3x, =4

What can you observe? oX, +4x, =23

Compute the rank and conditioning number of matrix A which
expresses the system of equations.

Solve the system of equations and give the LU decomposition of
matrix A. You can verify the correctness of your solution with the
graph you have drawn —is this always possible?



Exercise

* Add another equation 5x, = 18 to the system of equations of
the previous exercise and visualize it on the plot.

e Does a solution exist?

* Compute/approximate the solution by minimizing the squared
error and draw it as a point on the plot.



Exercise

* Create 10 random 2D data points (x, y) as a single ndarray in the range of 0 to 10.
Add to each x and y value of a point a number between 0 and 10 in such a way
that the first point is not increased but the last point is increased by 9 and the
remaining number in an increasing sequence (use arrange from nupy). Scale
each point by 3 units in x-direction. Then rotate each point around the origin by
45 degrees. Create the Vandermonde matrix A of polynomials of 15t order for the
data sample x (just the first polynomial, the matrix will have 2 columns).
Compute the least squares approximation of the linear system Ax =vy. Visualize
the data as points x,y and draw the solution of the approximation (the solution is
a straight line).

* Read the documentation of the numpy.polyfit function. Redo the approximation
using polyfit for 1t and 2" orders.



Vandermonde Matrix

Yo
Y1

_Yn



Exercise

* Plot the conditioning number as a function of p for the
following linear system (p € [0.9, 1.1]):

e

Interpret the result of your numerical analysis.




Exercise

 Download the file solve.npz which contains arrays of the linear
system Ax=b. Compute the vector x which solves this linear
system or give the best approximation if there is none such

vector.



https://wp.faculty.wmi.amu.edu.pl/solve.npz

Vectorizing Functions

SCALAR SINC FUNCTION

def sinc(x):
if x == 0.0:
return 1.0
else:
w = pi*x
return sin(w) / w

# attempt
>>> x = array((1.3, 1.5))
>>> sinc (x)

ValueError: The truth value of an array with

more than one element is ambiguous.
a.any () or a.all()

>>> x = r [-5:5:1003]

>>> y = vsinc (x)

>>> plot(x, y)

Use

SOLUTION

>>> from numpy import vectorize
>>> vsinc = vectorize (sinc)

>>> vsinc (x)

array ([-0.1981, -0.2122])

>>> x2 = linspace (-5, 5, 101)
>>> plot(x2, sinc(x2))
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