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Statistics

• English believe 24% of their population are Muslim → reality 
5%

• Saudis believe 28% of their population are overweight →
reality 71%

• Japanese believe 56% of their population live in the 
countryside → reality 7%
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Why statistics?

• English believe 24% of their population are Muslim → reality 
5%

• Saudis believe 28% of their population are overweight →
reality 71%

• Japanese believe 56% of their population live in the 
countryside → reality 7%

Source Ipsos MORI



Statistical inference

• Use data from a sampling measurement to infer information 
which is generally applicable



Example: drug testing

• 50 patients received new pain medication whereas a similar 
group of 50 patients were treated with older medication. 
Mean scores of perceived pain were 4.1 for the new 
medication and 4.5 for the old.



Example: drug testing

• Statistical inference addresses:

– How can we estimate the difference of the effect of medication?

– How can we quantify the precision of that estimate?



Statistical inference

• Effect size: the quantification of an effect, e.g. in the simplest 
case a single number 

• Confidence interval and/or the standard error: the precision 
of the quantification (estimate)



http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html


Standard deviation

𝜎2 =
1

𝑁−1
σ𝑖=1
𝑁 (𝑥𝑖 − 𝜇)2, std = 𝜎

http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html


Assessing variance with standard deviations



Comparing distributions

• Difference of means: e.g. mu1 – mu2
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Comparing distributions

• Overlap of distributions



Computing overlap

• Define a threshold between the means of the distributions:

– thres = (std1 * mu2 + std2 * mu1) / (std1 + std2) 

threshold



Computing overlap

• Compute number of data points below threshold:
sample1_below_thres= sum(sample1 < thres) 

sample2_above_thres= sum(sample2 > thres)

sample1_overlap = sample1_below_thres / len(sample1)

sample2_overlap = sample2_above_thres / len(sample2)

misclassification_rate = (sample1_overlap + 
sample2_overlap) / 2
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Computing overlap

• Compute number of data points below threshold:
sample1_below_thres= sum(sample1 < thres) e.g. 100

sample2_above_thres= sum(sample2 > thres) e.g. 200

sample1_overlap = sample1_below_thres / len(sample1)

sample2_overlap = sample2_above_thres / len(sample2)

e.g. 0.2 and 0.3 (20% and 30%)

misclassification_rate = (sample1_overlap + 
sample2_overlap) / 2



Computing overlap

• Compute number of data points below threshold:
sample1_below_thres= sum(sample1 < thres) 

sample2_above_thres= sum(sample2 > thres)

sample1_overlap = sample1_below_thres / len(sample1)

sample2_overlap = sample2_above_thres / len(sample2)

misclassification_rate = (sample1_overlap + 
sample2_overlap) / 2



Example misclassification rates

~0.05 ~0.2 ~0.99



Histogram vs density distribution function

Normal distribution function (mu, std)
Histogram of data sample



Gaussian/Normal Distribution Function



Statistics: scipy.stats

• Over 80 continuous 
distributions

pdf

cdf

Rvs

ppf

fit

var

Mean

std



Statistics: scipy.stats

• 10 discrete 
distributions

pdf

cdf

Rvs

ppf

fit

var

Mean

std



Stats objects



Stats objects



Mean of sample means

Sample a 100 random variable array 1000 times and plot the 
means as a histogram



Confidence interval

np.percentile( sample, [ 2.5, 97.5 ] )

array([-0.0496105 ,  0.05035856])
Lower Confidence Limit Upper Confidence Limit



The sample mean std is the standard error

Sample a 1000 random variable array 1000 times and plot the 
means as a histogram: standard deviation ~0.03 (vs. ~0.1 for the 
100 samples simulation)

100 samples 1000 samples



Statistical inference

• Effect size: means, standard deviations, overlaps

• Precision: Confidence interval and/or the standard error
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Multivariate data samples (covariance)?

Variance in weight = 35.0

Variance in height = 36.9

𝜎2 𝑥, 𝑦

𝜎2 𝑦, 𝑦

𝜎2 𝑥, 𝑥



Covariance definition

Σ =
𝜎2 𝑥, 𝑥 𝜎2 𝑥, 𝑦

𝜎2 𝑥, 𝑦 𝜎2 𝑦, 𝑦

𝜎2 𝑥, 𝑦 =
1

𝑁
෍

𝑖=1

𝑁

(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)



Example Covariance Matrices

Σ =
5 4
4 5

Σ =
9 0
0 1

Σ =
1 0
0 9

Σ =
5 −4
−4 5



Normal distribution

𝜎2 𝑥, 𝑦 =
1

𝑁
෍

𝑖=1

𝑁

(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)



Scaling by 3 times in x-direction?



Scaling by 3 times in x-direction?

𝑆 =
3 0
0 1



Scaling Transformation Matrix

𝑆 =
3 0
0 1

𝑆 =
𝑠𝑥 0
0 𝑠𝑦



Eigenvectors

𝑆 =
3 0
0 1

𝑆 =
𝑠𝑥 0
0 𝑠𝑦

𝒗𝟏

𝒗𝟐



Covariance and Data Transformation

𝑆 =
3 0
0 1

𝑆 =
𝑠𝑥 0
0 𝑠𝑦

𝒗𝟏

𝒗𝟐
Σ =

9 0
0 1

= 𝑆2



Rotation Transformation

𝑅 =
cos(𝜃) −sin(𝜃)
sin(𝜃 cos(𝜃)



Covariance as Linear Transformations
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Covariance as Linear Transformations

𝑅 =
cos(𝜃) −sin(𝜃)
sin(𝜃 cos(𝜃)

Σ𝑣 = 𝜆𝑣

Σ𝑉 = 𝐿𝑉
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Covariance as Linear Transformations

SR

Σ Σ′ = 𝑅𝑆𝑆𝑅−1



Covariance as Linear Transformations

(SR)-1

Σ Σ′ = 𝑅𝑆𝑆𝑅−1



Covariance as Linear Transformations

(SR)-1

Σ Σ′ = 𝑅𝑆𝑆𝑅−1

Eigendecomposition
S2 = L, R = V



http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.corrcoef.html


http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.cov.html
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.cov.html
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.cov.html






Dot Broadcasting



Exercise

• Generate 100 random points sample from a normal distribution (mu=3.0, 
sigma=1.0) and visualize them as a histogram.

• Generate 100 random points sample from a normal distribution (mu=1.0, 
sigma=2.0) and visualize them together with the previous histogram as a 
histogram.

• Calculate the misclassification rate for these two distributions.
• Fit a normal distribution function to the first data set.
• Generate 100 times 100 random points sample from a normal distribution 

(mu=3.0, sigma=1.0). Create a histogram of the means and calculate the 
standard error.

• Repeat the previous point 1000 times instead of 100. How does the 
standard error differ?



Exercise

• Create a bivariate distribution of 1000 points (normal with mu=1, 
sigma=1) and visualize it as a scatter plot. You should see a point 
cloud centered around the origin.

• Apply a transformation along the x-axis via a scaling matrix that 
stretches the point cloud of data by a factor 3 and visualize the 
points again.

• Rotate the point cloud by 45 degrees “up” using a rotation matrix.
• How can you apply both transformations (scaling and rotating) in a 

single transformation? 
• Compute the correlation coefficient for the transformed data set.



Exercise

• Calculate the covariance matrix of your transformed bivariate 
data sample. Compute the eigendecomposition of the 
covariance matrix. Compute the inverse of the transformation 
matrix by multiplying eigenvalues with the matrix composed of 
both eigenvectors (don’t forget to take the square root of the 
eigenvalues) and transform your data set with it. Plot the 
transformed data as a scatter plot, you should see a similar 
point cloud to the original one again (without the stretch and 
rotation).


