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Differential equation

dx(t)

= f (x(t),t)
when x isa 1D function we call the above an ordinary
differential equation otherwise a partial differential equation

d
Zit) or d— or x'(t) is read as “the rate of change of x over t”

f is the function that computes the derivative of x with respect
tot

The solution to a differential equation is a function x that
satisfies the equation

Equations of the form
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Geometric Interpretation (15t order ODE)

An ODE is a vector field
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Geometric Interpretation (15t order ODE)

f (x(8),t)

An ODE is a vector field

The solution to an ODE
is a curve which is
tangential at all points,
(integral curve)




Bacterial Growth

How E. coli Grows
00:00:00 00:20:00 00:40:00 01:00:00

01:20:00

lv'

Vi’e
»




Modeling with differential equations

* P =population, t = time(days)



Modeling with differential equations

* P =population, t = time(days)
dp

dt



Modeling with differential equations

* P = population, t = time(days)

. L= kp
dt



Modeling with differential equations

* P = population, t = time(days)

. L= kp
dt

1dP

P dt



Modeling with differential equations

P = population, t = time(days)

dpP
— = KP
dt
1dP

P dt
1dp = Kdt
P



Modeling with differential equations

P = population, t = time(days)
dP

2P = KP
dt

1dP _

Pdt
LdP = Kdt
P

[-dP = [Kdt



Modeling with differential equations

P = population, t = time(days)
dP

= =kp
dt

1dP

P dt
1dp = Kdt
P

[-dP = [Kdt



Modeling with differential equations

P = population, t = time(days)
dP

= =kp
dt

1dP

P dt
2dP = Kdt

P

[-dP = [Kdt

|P| — pKt+(1



Modeling with differential equations

P = population, t = time(days)
dP

= =kp
dt

1dP

P dt
2dP = Kdt

P

[-dP = [Kdt



Modeling with differential equations

P = population, t = time(days)
dP

= =kp
dt

1dP

P dt
2dP = Kdt

P

[-dP = [Kdt



Exponential Growth

P = population, t = time(days)
dP

= =kp
dt

1dP

P dt
2dP = Kdt
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[-dP = [Kdt
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C = Population at time 0

K = coefficient of growth (unit is 1/t)




Mathematical Model of e.coli Growth
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Population growth N relative to food C
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Population growth N relative to food C
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Population growth N relative to food C
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Population growth N relative to food C
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Vector Field
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matplotlib.pyplot.quiver

quiver(\*args, data=None, \ *\ *kw) [source]

X = np.linspace(9, 300, 300)
Y = np.linspace(© ,5000, 300)
np.meshgrid(X, Y)

=
<
|

dxdt = # some differential equation e.g. X**2.0 * 0.0001
dt = scale * np.ones(X.shape)
dx = dxdt * dt

plt.quiver(X[::20,::20], Y[::20, ::20], dt[::20, ::20],
dx[::20,::20], headwidth=2.0, angles='xy', scale=25.)



Stream Plot
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matplotlib.pyplot.streamplot

streamplot(x, v, u, v, density=I1, linewidth=None, color=None, cmap=None,

norm=None, arrowsize=1, arrowstyle="'—-|>"', minlength=0.1, transform=None, zorder=None,

start points=None, maxlength=4.0, integration direction='both', *, data=None) [source]

# .. analogous to quiver

plt.streamplot(X, Y, dt, dx)
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Add color

#in streamplot..
color = dx

e.coli bacteria

100 150
time(minutes)



N(t)

Logistic Growth Function
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Numerical solutions

* There is usually no closed form solution for a system of
differential equations, unless the problem is really simple

* We look therefore for an approximate solution



Field of derivatives

 We know how to compute f
* This means that we can compute the vector/slope field of x



Vector/Slope field
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Forward Euler Numerical Solution
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dt =10

dt

dt=0.1

Follow the vector field: x[n+1] = x[n] + dt*f(x[n], t[n])



Python Implementation

# f 1s your differential equation

def ode FE(f, X 0, dt, T):
steps = int(round(float(T)/dt))
X = np.zeros(steps + 1)
t = np.linspace(@, steps * dt, len(x))
x[@] = X O
for n in range(steps):
x[n+1l] = x[n] + dt*f(x[n])
return x, t



Modeling Process

Observation
) 2
Hypothesis

¥

Differential equations

!
Solution




Hares and Lynxes Population Growth Model




Predator — Prey Relation
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Hares Lynxes
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Hares and Lynxes Population Growth Model

* Population y (lynxes) changes in time due to reproduction
limited by population x (hares)
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Hares and Lynxes Population Growth Model

* Population y (lynxes) changes in time due to reproduction
limited by population x (hares)

 Some die due to age

E=dxy—cy



Hares and Lynxes Population Growth Model
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Hares and Lynxes Population Growth Model

Lynxes: % = dxy —cy

dx
Hares: — = ax — bxy

Multiply by lynxes to reflect
effects of predation




Example Model Solution

Predator-Prey Interaction Model

Hares

Lynxes: % = dxy —cy

dx
Hares: — = ax — bxy

Lynxes

nnnnnnnnnn



usands
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Lotka-Volterra Predator-Prey Model




Exercise

* Plot a vector field and a stream plot for the exponential growth
model.

* At the start of an experiment there are 10 plants of Wolffia
microscopica. At time = 240 hours there are 1015. How many
plants will there be at 20 days? Model the population growth
assuming a constant exponential growth rate and plot the
graph using logarithmic scale.



Exercise

* Plot a vector field and a stream plot for the logistic growth
model. Express the rate of change of population size with a

color map.
* Bacteria grow at a rate of 20% per hour in a petri dish. If there

is initially one bacterium and a carrying capacity of 1 million
cells, how long does it take to reach 500,000 cells? Plot the

graph using logarithmic scale.



Exercise (for next week)

* Assume the following system of differential equations,

where S is the number of susceptible, | the number of daS ﬁIS
infected and R the number of recovered people in a — = ,
population suffering from a virus outbreak. N is the sum of ¢ N

S, I and R. Plot the graphs for the variables S,I, and R
assuming beta = 0.5 and gamma = 0.1 using the Forward dl ,815

Euler method to numerically solve the system of ODE fora = __ T
time period of 200 days. Assume that at the start of the At o N Vs
outbreak we have 1000 susceptible and 1 infected person.

At which day do we have the greatest number of infected?

Explain what the coefficients beta and gamma represent in dR — ~T

the context of a virus epidemic. Why is N set equal to the d_t — 7L,

sum of the three variables?




