
Journal of Experimental Botany, Vol. 70, No. 14 pp. 3601–3613, 2019
doi:10.1093/jxb/erz210  Advance Access Publication 9 July, 2019

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. 
For permissions, please email: journals.permissions@oup.com

REVIEW PAPER

Formal description of plant morphogenesis

Wojtek Pałubicki1,*, Andrzej Kokosza1,  and Agata Burian2,

1  Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
2  Department of Biophysics and Morphogenesis of Plants, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland

* Correspondence: wp06@amu.edu.pl

Received 28 January 2019; Editorial decision 26 April 2019; Accepted 14 May 2019

Editor: Anja Geitmann, McGill University, Canada

Abstract

Plant morphogenesis may be characterized by complex feedback mechanisms between signals specifying growth 
and by the growth of the plant body itself. Comprehension of such feedback mechanisms is an ongoing research 
task and can be aided with formal descriptions of morphogenesis. In this review, we present a number of established 
mathematical paradigms that are useful to the formal representation of plant shape, and of biomechanical and bio-
chemical signaling. Specifically, we discuss work from a range of research areas including plant biology, material sci-
ences, fluid dynamics, and computer graphics. Treating plants as organized systems of information processing allows 
us to compare these different mathematical methods in terms of their expressive power of biological hypotheses. This 
is an attempt to bring together a large number of computational modeling concepts and make them accessible to the 
analytical as well as empirical student of plant morphogenesis.
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Introduction

Humans have created a tremendous number of languages 
to communicate ideas. They constitute fundamental tools 
to describe our sensory experiences and rational thoughts. 
Traditionally, explanations on the nature of the universe were 
conducted with theological arguments. In the book Timaeus, 
for instance, Plato arrived at the conclusion of the existence 
of a universal architect who provides plants as kindred spirits 
for the reinforcement of humans. Gradually, this theological 
course of argumentation has been to a large extent superseded 
by a constructivist viewpoint, where model constructs are the 
main elements of explanation. D’Arcy Thompson (1942) in 
his treatise On Growth and Form provided a compelling case 
for a model of biological growth based on physical laws. He 
stated that,

‘We begin by describing the shape of an object in the 
simple words of common speech: we end by defining 

it in the precise language of mathematics; and the one 
method tends to follow the other in strict scientific 
order and historical continuity.’

According to his reasoning, at the most fundamental scale of 
abstraction mechanisms of growth must all be physical. Hence, 
mathematics as the language of physical laws should natur-
ally be the language of choice to describe biological growth. 
D’Arcy Thompson realized early that mathematics as a formal 
language has distinctive advantages over natural languages for 
describing and analysing morphogenesis. His specific propos-
ition was the introduction of mathematical transformations of 
2D diagram geometries of various biological patterns. This de-
scription of shape in geometric terms and representation of 
growth as a geometrical transformation allowed a quantitative 
comparison of different organisms. A recent extension and ap-
plication of his ideas has been presented by Mitchison (2016). 
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In this review, we aim to present a survey of mathematical in-
struments that are helpful in the description of plant growth. 
Adopting D’Arcy Thompson’s viewpoint, we consider plant 
growth as the result of physical signals that specify changes 
of plant form over time. Abstractly, a physical signal is simply 
a means to encode information, which can be processed in 
time as well as in space as a result of physical interactions with 
other signals. A  large body of research in plant morphogen-
esis suggests that these signals can be biochemical (e.g. Leyser, 
2018) or biomechanical (e.g. Kierzkowski and Routier-
Kierzkowska, 2019) in nature, and form large signaling net-
works. Importantly, these signals are embedded in the plant 
structure itself, and therefore translate with the structure as it 
grows, affecting in turn the dynamics of signaling networks 
(Green, 1999). Plant growth can thus be controlled by complex 
feedback mechanisms whose dynamics are not easily predicted 
by the human mind. Advances in theoretical biology indicate 
that the evaluation of such complex hypotheses can be accom-
plished alternatively by computational models (Prusinkiewicz 
and Runions, 2012). Therefore, to provide a meaningful, formal 
description of plant morphogenesis, it seems expedient to ex-
press plant shape, signaling, and their respective changes over 
time computationally.

Specifically, plant shape alone can be conveniently de-
scribed in geometric terms. There exists, however, an obstacle 
to expressing geometry on modern computer architecture. 
Computers process instructions in a strictly sequential order, 
and only a few instructions at a time. The description of plant 
morphogenesis in terms of spatial and temporal notions requires 
parallel processing of instructions and, therefore, cannot be nat-
urally represented by computers. To overcome this limitation, 
new computational representations of shape and signaling have 
been developed in a variety of research areas such as mathem-
atics, material sciences, computer graphics, and computational 
biology. The persisting trend towards placing computing power 
on the graphics card enables parallelized computing, which has 
the future potential to overcome the limitation of strictly se-
quential instruction processing.

In the first section of this paper, we review and compare 
different computational methods of representing geometry. We 
then introduce methods to formally represent signaling and 
consider their applications in the study of plant morphogen-
esis. These methods are numerous and come from a range of 
research fields. Often, they have been applied to express ei-
ther biochemical or biomechanical signals, whereas modern 
hypotheses of morphogenesis demand the joint simulation of 
all the different kinds of signals involved in plant growth. The 
separate development of these methods in different research 
areas and their usually limited scope of use hinders their evalu-
ation for this task. In summary, dynamic plant shapes can be 
described by both representations of geometry and represen-
tations of signaling.

Thus, the goal of this review is to present in a compara-
tive way a large selection of different methods applicable to 
the description of morphogenesis. A mathematically rigorous 
comparison between different formalisms is, in the majority 
of the cases, impossible. This makes evaluating the use of dif-
ferent methods of computer modeling within plant biology 

inherently difficult. We can, however, compare these methods 
in their expressive power of morphogenetic hypotheses rather 
than the formalisms themselves. To accomplish such a com-
parison, we will abstractly treat signaling as an information-
processing network (Nurse, 2008). The key feature of this 
network is its property of having temporal as well as spatial di-
mensions. Specifically, we refer to the spatial routes of informa-
tion transfer as ‘signal topology’. Analogously, plant shape can 
be described not only in geometric terms (e.g. size, orientation, 
spatial localization), but also by the connectivity between geo-
metric objects, which we refer to as ‘shape topology’. Hence, 
we aim at comparing different computational modeling para-
digms in terms of shape and signal topology. Furthermore, 
we also discuss the accuracy and performance of the various 
methods. This is an attempt to bring together a large diversity 
of methods describing geometry as well as signaling, and to 
provide a high-level overview of the subject. Further reading 
relevant to the more technical aspects of the various methods 
are referenced throughout the text. To make these methods 
more accessible to the analytical as well as the empirical re-
searcher, we give examples of biological applications.

Representation of geometry

‘And, for geometry, till of very late times it had no place 
at all (at universities), as being subservient to nothing 
but rigid truth. And if any man by the ingenuity of his 
own nature had attained to any degree of perfection 
therein, he was commonly thought of a magician and 
his art diabolical.’

Thomas Hobbes (1588–1679)

To describe plant shapes in accordance with the modeling para-
digms postulated above, we need to understand how geom-
etry is represented computationally. Perhaps surprisingly, only 
relatively few computational representations of geometry have 
emerged to date. The main motivation behind these studies is 
performance and accuracy, or in other words computation-
time/memory demands and approximation of shape, respect-
ively. We refer to representations with high computation-time 
demands as complex and with high memory demands as ver-
bose. More verbose representations usually allow for faster 
computation times than less-verbose ones. This is what is called 
the time/space or complexity/verbosity trade-off, which pro-
vides us with a first, meaningful way to distinguish the various 
approaches of shape representation (Fig. 1).

The simplest and most verbose representation of geometry is 
the representation of discrete space by a lattice (Fig. 1). Discrete 
space can mathematically be represented as an n-dimensional 
lattice (grid) consisting of uniform elements with no overlaps 
and no gaps (regular tiling) (Fig. 2A). In a 2D lattice the elem-
ents are usually represented by pixels, in 3D they are called 
voxels; other geometries of lattice elements are possible (e.g. 
triangles, tetrahedra). The coordinate at each element is given 
by a pair (2D) or triplet (3D) of natural numbers referred to 
as an index. Computationally, lattices are trivial to represent as 
multi-dimensional arrays that define the connectivity between 
individual elements, i.e. the topology of shape. Rectangular 
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lattices with square cells have been used to represent plant 
tissues and to simulate polar auxin transport (Rolland-Lagan 
and Prusinkiewicz, 2005; Bayer et al., 2009). Lattices have also 
used to represent Arabidopsis roots (Grieneisen et  al., 2007; 
Mironova et al., 2012). While being mathematically and com-
putationally simple, a uniform lattice-based representation is 
not very intuitive. Humans prefer hierarchical representations 
of objects, for example in terms of curvature or surfaces.

A hierarchical representation of shapes can be achieved by 
parametric piecewise-defined functions, i.e. given by a set of 
functions defined at specific positions in space. Generally, they 
take the form of:

F(x) =
∑
i

ai fi(x)

where ai is the parameter(s) of the representation and fi(x) are 
locally defined basis functions. The piecewise functions are used 
to define coordinates of geometric objects. In the simplest case 
they are linear functions. These can be used to define vertices 

(points) of a mesh consisting of lines and polygons (Fig. 2B). 
Importantly, the objects need not be of the same dimension. 
The hierarchical relations between these geometric objects 
can be given by an incidence graph (Fig. 2C). For example, to 
model the geometry of a cell monolayer we can represent bio-
logical cells by t3D volumetric elements that can be bounded 
by 2D polygonal faces (cell walls), 1D edges, and 0D vertices 
(cell junctions) (Fig. 2D). This means that we can traverse 
both the incidence graph as well as the local neighborhood of 
geometric objects of the same dimension (topology of shape 
(Fig. 2C, D). For example, cell topology has been represented 
with 2D and 3D graphs for Arabidopsis roots, hypocotyls, and 
leaves (Montenegro-Johnson et  al., 2015; Carter et  al., 2017; 
Jackson et al., 2017). Representations based on polygons and 
triangle meshes have been used to model a wide variety of dif-
ferent plant organs. For example, Runions et al. (2017) mod-
eled leaves of different shapes (simple, lobed, or compound) as 
2D structures consisting of polygons that represented the leaf 
margin, line segments that represented the veins, and triangle 
meshes that represented the leaf blade.

More advanced methods of compositing these elements in 
a unified way are given by quad-edge structures (Guibas and 
Stolfi, 1985), vertex–vertex systems (Smith, 2006), and cell 
complexes (Edelsbrunner et  al., 1995; Mjolsness and Cunha, 
2012; Prusinkiewicz and Lane, 2013). The use of cell com-
plexes and their advantages in modeling 3D cell division has 
been shown by Yoshida et al. (2014) (Fig. 3A), who described 
3D models of the growing Arabidopsis embryo with cell walls 
represented by a triangular mesh. A similar approach has also 
been used to model the development of Arabidopsis hypo-
cotyls (Bassel et al., 2014).

The piecewise functions that approximate a given shape 
need not necessarily be linear and thus limited to geometries 
such as lines, triangles, or other polygons. Instead, low-degree 
polynomial functions can be used to define smooth curves 
or surfaces. This is a slightly less verbose way of representing 

Fig. 1.  Three categories of representations of geometry distinguished in 
terms of verbosity and complexity. Darker shades of grey indicate more 
accurate approximations of shape.

Fig. 2.  Illustrative diagrams of different methods of computational representation of geometry. (A) Two-dimensional grid with indexed elements shown in 
brackets. (B) Triangle mesh composed of different geometric objects: vertices (v), edges (e), and faces (f). (C) Incidence graph describing the connectivity 
of the geometric objects shown in (B), indicated by thin lines; the neighborhood is indicated by the thick line.; (D) Graph (thick lines) indicating the 
topology of geometric objects for the 3D case, where C1–C3 are volumetric cells. (E) Fourier series decomposition of a periodic function of space (framed 
and indicated in red) expressing spatial frequency into sines and cosines (indicated in blue and purple). (B, C) Adapted from Lane (2015).

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/70/14/3601/5530552 by guest on 26 April 2024



3604  |  Pałubicki et al.

geometry, since less information is needed to approximate 
shapes. Methods based on polynomial functions, for example 
Bezier or spline functions, have been used to model real-
istic geometries of plant organs such as leaves (e.g. Federl and 
Prusinkiewicz, 1999; Runions et  al., 2005; Smith and Bayer, 
2009) (Fig. 3B). These polynomial representations are better 
suited to describing plant structures than linear representa-
tions, since strictly straight geometries are seldom encountered 
in nature. However, polynomial-function representations will 
typically change the global shape as a result of local modifi-
cations. Thus, they do not allow an easy refinement of shape 
approximations.

Interestingly, geometry can also be represented in a non-
spatial way, for example as frequencies (Fig. 2E). In particular, 
methods based on the Fourier transform are a useful tool to 
represent spatial data (Staib and Duncan, 1992). The decom-
position of spatial information into a series of sine and co-
sine waves allows its interpretation in terms of wavelength and 
amplitude, also known as spatial frequency. Representing data 
as frequencies results in an even less verbose representation of 
shapes and lends itself well to shape analysis (Fig. 3C) (Klein 
and Svoboda, 2017). The transformation of shape into the fre-
quency domain also allows a hierarchical representation. Areas 
of low variation in spatial data are encoded in low frequencies 
whilst high variation is encoded as high frequencies (Fig. 2E). 
One problem with Fourier transforms in the context of 3D 
modeling is that shape features are usually aperiodic and local, 
whereas trigonometric functions are periodic and global. This 
limitation is addressed by wavelets that are defined at different 
positions in space (Schröder and Sweldens, 2000). The add-
ition of positional information means that wavelets represent 
a mixed spatial and frequency approach, where they can be 
simultaneously localized in both space/time and the frequency 
domain. Wavelets have not been widely applied to represent 

plant structures, but have been used to represent a diversity of 
polysaccharide layer patterns in pollen cell walls (Radja et al., 
2019). Away from plant biology, other shapes have been mod-
eled as well, such as the human brain (Dong et al., 2009) (Fig. 
3D). Apparent advantages of wavelets are dynamic resolutions 
of geometry and even smaller memory requirements com-
pared to other parametric methods.

The most complex methods of geometric representation 
considered in this review are given by single-value functions. 
This concept has been developed in solid modeling (Rvachev, 
1963) and computer graphics (Ricci, 1973), where it is also 
referred to as ‘implicit surface’ modeling. The main idea is to 
use a single continuous function to define an object geometry 
in 3D Euclidean space as f(x,y,z)≥0, where the object surface 
(called the implicit surface) is the zero set f(x,y,z)=0. Hence, 
points in space can be evaluated by a single, real-valued func-
tion to determine whether they belong to the surface or object 
volume. Implicit surface methods have been used to represent 
plant structures, such as trees (Galbraith et al., 2004) (Fig. 3E), 
or cell shapes in the leaf epidermis (Sapala et al., 2018).

In summary, of the representations that we have discussed, 
the lattice-based methods are the most verbose, followed by 
piecewise functions, and single functions (Fig. 1). With respect 
to complexity, the sequence of methods of geometric repre-
sentations is reversed. Generally, the more complex a method, 
the better is the resulting approximation of shape (Fig. 4). 
Theoretically, implicit surface methods seem to provide the 
best accuracy of approximation but, in practice, finding single, 
global functions is costly. Therefore, the best trade-off between 
performance and accuracy is provided by parametric piecewise 
functions, which are currently the most common representa-
tion of plant geometry.

Apart from the performance and accuracy trade-off, it is 
also useful to consider how flexible various representations 

Fig. 3.  Examples of results generated with different methods of shape representations. (A) Cell complexes used to express a cell division sequence in 
an Arabidopsis embryo (reprinted from Yoshida et al., 2014). (B) Bezier surface representing the shape of an Arabidopsis leaf (reprinted from Smith and 
Bayer, 2009). (C) Different leaf shapes modeled with Fourier descriptors (method described in Klein and Svoboda, 2017). (D) Wavelet representation of 
the human brain with varying numbers of coefficients (1000, top; 5000, bottom) (reprinted from Dong et al., 2009). (E) Implicit surface model of a tree 
(reprinted from Galbraith et al., 2004).
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are in regard to changes of geometry and topology. This is 
important because the description of morphogenesis requires 
not only the representation of static plant shapes, but also their 
changes over time, i.e. development. Lattices by definition 
enforce a fixed geometry, which readily expresses growth by 
accretion (Coen et al., 2017). However, such a fixed geom-
etry cannot account for changes in shape arising due to sym-
plastic plant growth, where contacts between neighboring 
cells are preserved (i.e. no cell sliding). In contrast, piecewise-
defined function representations allow a more efficient ex-
pression of symplastic growth by adjusting the positions of 
geometric objects. For example, growth can be simulated by 
increasing the length of existing line segments, or by add-
ition of new line segments. The latter method can also be 
used to simulate cell division (Barbier de Reuille et al., 2006; 
Besson and Dumais, 2011). However, recalculations are re-
quired if topological conflicts are introduced, for example as 
a result of the addition or removal of geometric objects, or by 
large deformations. Due to their continuous character, single-
function representations have a major advantage over other 
representations of geometry, since they never require a re-
calculation of topology. In summary, plant modelers have the 
choice between a fixed topology presented by lattice-based 
methods, the hierarchical topology provided by piecewise-
defined function representations, and the flexible topology 
given by single-function representations.

Representation of signaling

‘Cell and tissue, shell and bone, leaf and flower, are so 
many portions of matter, and it is in obedience to the 
laws of physics that their particles have been moved, 
moulded and conformed. They are no exceptions to 
the rule that God always geometrizes. Their problems 
of form are in the first instance mathematical prob-
lems, their problems of growth are essentially physical 

problems, and the morphologist is, ipso facto, a student 
of physical science.’

D’Arcy Thompson (1860–1948)

As implied earlier, a geometric representation of plant shape 
alone is not sufficient to formally express hypotheses of plant 
morphogenesis. In this review, we consider growth as the out-
come of signaling that specifies changes of form over time. 
Independently of their nature, signals, such as transcription 
factors, hormones, enzymes, and mechanical signals, can be 
treated identically with regard to their mathematical descrip-
tion. Furthermore, we describe signaling abstractly as a pro-
cess of information transfer in space. Since information can be 
transferred between different locations, such as molecules, cells, 
tissues, and organs, it is crucial to accurately describe the routes 
of information transfer. We refer to the formal description of 
these routes as signal topology.

Theoretically, at this point two differing perspectives of 
mathematical signal description can be assumed. Either the 
signal is described as a continuous variable and becomes a 
property of space or shape (Fig. 5A) or the signal is viewed 
discretely as an independent object located in space (Fig. 5B). 
For example, the diffusion of molecules can be represented as 
a continuous concentration distribution over a tissue represen-
tation (Turing, 1952; Meinhardt and Gierer, 1974). Similarly, 
other models of mass molecule movement such as polar trans-
port have been expressed with such a continuous approach 
(Mitchison, 1981). Likewise, we can express the diffusion of 
molecules with a set of discrete elements that possess positions 
and move across a model tissue (Garnett, 2010). Essentially, 
these two descriptions only differ in scale of abstraction, i.e. 
microscopic versus macroscopic view. The discrete approach 
models information transfer at the scale of the signal represen-
tations themselves, whereas the continuous approach models 
it at larger scales of structural organization of plant form (e.g. 
representations of cells, tissues, and organs) where the collective 
action of signals is treated in an averaged way. Furthermore, 

Fig. 4.  Comparison of different methods of shape representation resulting in varying approximations of a simple branching structure. (A) Voxel 
representation, (B) linear piecewise functions, and (C) implicit surfaces (method described in Turk and O’Brien, 2005).
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the continuous approach allows signals to be described with 
mathematical functions, for example scalar value functions of 
the form F(�x ,t)=s, where �x  is a position in space, t is a measure 
of time, and s is a measure of the amount of a specific signal. 
However, in most cases, expressing relations between variables 
directly in the form of global functions is not possible. In this 
situation, the modeler can resort to approximations with, for 
example, differential equations and their numerical solutions 
such as finite difference methods.

Methods allowing the formal description of plant signaling 
have been developed in various research areas. By analogy to 
the representations of form introduced previously, we discuss 
these methods of signaling representation in three distinct 
groups, distinguished here in terms of verbosity, complexity, 
and flexibility (Fig. 6). The first group is again referred to as 
lattice-based methods, the second as off-lattice methods, and 
the third as continuous space methods.

Lattice-based methods

Historically, the first attempts at modeling spatial informa-
tion transfer date back to Stanislaw Ulam (1962) and John Von 
Neumann (1966), although, similar approaches at the time had 
been used to describe the growth of bacterial colonies (Eden, 
1961). Ulam and von Neumann introduced the notion of ‘cel-
lular automata’, which has become nearly synonymous with 
lattice-based methods. Originally developed to model fluid dy-
namics and self-replication, it was quickly applied to modeling 
morphogenesis, such as growing branching structures. Signal 
topology is given by 2D or 3D lattices, consisting of indexed 
cells (Fig. 7). Each cell can be in a number of different states that 
are defined by natural or real numbers. A cell state can either 
represent a discrete or continuous signal. Individual cells may 
interact locally with their neighboring cells, which can change 
their states. The local interactions are determined by transition 
functions dependent on the current state of the cell and its 
neighbors (Fig. 7A). The transition function usually takes the 
form of relatively simple update rules of the kind ‘if neighbor 

x state is y then change state to z’. All cells change their states 
synchronously throughout the simulation, and hence express 
the concept of spatial information transfer. Cellular automata 
have been applied to a broad range of physical, chemical, and 
biological systems (Hwang et al., 2009).

In cases where the update rules are chosen due to probabil-
istic distributions, a cellular automaton is called stochastic; ex-
amples are Lattice-Gas and Lattice-Boltzmann models (Fig. 
7B, C). These formalisms have been used to study signal inter-
actions and transport in biological systems, such as tumor growth 
(Hatzikirou et  al., 2010) and brain aneurysms (Chopard et  al., 
2010). However, no applications to plant biology have emerged 
to date. The Lattice-Gas models are designed to better express 
discrete signals compared to regular cellular automata. They allow 
more than one state to be stored in a cell, thus representing mul-
tiple discrete signal representations at one location and provide 
separate update rules to express signal propagation throughout 
the lattice (Fig. 7B). In contrast, Lattice-Boltzmann models better 
express the continuous representation of signals. Each lattice cell 
is associated with local, continuous distribution functions that are 
used to express an averaged, collective motion of signals (Fig. 7C). 
They have also been applied to express reaction–diffusion systems 

Fig. 6.  Three categories of signaling representations distinguished by 
verbosity, complexity, and flexibility.

Fig. 5.  Illustration of representations of signals associated with an idealized plant tissue (grey hexagons) at different scales of abstraction. (A) Continuous 
approach. The signal concentration is indicated by a blue color scale (left) and the signal topology is indicated by the graph (right). (B) Discrete approach. 
The blue disks indicate the positions of signal representations (left) and the signal topology is indicated by the graph (right).
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(Ponce Dawson et al., 1993). In the context of plant biology, both 
Lattice-Gas and Lattice-Boltzmann methods could be used to 
model the long-distance transport of biochemical signals, for ex-
ample via the vascular system.

Another extension of cellular automata is provided by 
Cellular Potts models (Graner and Glazier, 1992; Merks and 
Glazier, 2005). Lattice cells are labeled and, together with other 
cells of the same label, define regions that can be used to repre-
sent biological cells, for example (Fig. 7D). Dynamics of regions 
are defined by a number of conditions, such as preferred perim-
eter or tension, which are encapsulated by global functions, i.e. 
Hamiltonian energy functions. A new state of individual cells 
in each simulation step is selected from a number of random 
states and indicated by the global function. We thus have local 
interactions among individual cells as well as regional inter-
actions determining the shape of regions (Marée et al., 2007). 
Consequently, the neighborhood of regions may change over 
time, meaning that signal topology can be considered to be dy-
namic at the scale of regions but fixed at the scale of cells (Fig. 
7D). Cellular Potts models have been used in 2D representa-
tions of growing Arabidopsis roots, where cell growth and divi-
sions are driven by turgor pressure and auxin (Grieneisen et al., 
2007). Specifically, the root cells are modeled as regions on a 
lattice that describes both the cell walls and the cell interiors. 
Root cell growth is a consequence of the movement of lattice 
cells driven by the difference of cell area and target area (inter-
preted as turgor pressure), which in turn is regulated by auxin 
concentration. The main disadvantage of current Cellular-Potts 
models in the context of plant morphogenesis is that cells can 
slide relative to each other, making the simulation of symplastic 
cell growth challenging.

Off-lattice methods

Signal topologies can be expressed with formal grammars, 
which are constituted by an alphabet of symbols, a set of re-
writing rules, and an axiom (initial string of symbols). In 

biological modeling, formal grammars have been mainly used 
in the form of L-Systems. They were introduced by Aristid 
Lindenmayer (1968) to capture the growth of simple non-
branching filaments of cyano-bacteria. They have subsequently 
been extended and adapted to branching structures such as 
neurons, human lungs, and plant shoots (Prusinkiewicz and 
Lindenmayer, 1990). L-systems extend the notion of strings of 
symbols to more complex data structures that have a state (mod-
ules) given by numerical parameters representing, for example, 
hormone concentrations. They employ synchronous replace-
ment of modules according to replacement rules called produc-
tion rules (Fig. 8A). In their most basic form, L-systems allow 
for communication via a lineage, meaning that rules are selected 
considering only the current state of a module (context-free 
L-systems). These L-systems can be useful when information 
is transferred via a cell lineage, for example, in case of genetic 
information (Prusinkiewicz et al., 1988). However, the state of a 
module may also depend on the interactions with neighboring 
modules (context-sensitive L-systems) that represent, for ex-
ample, morphogen diffusion between cells. Growth simulations 
based on L-systems have been applied to study patterns of shoot 
branching in relation to polar auxin transport in Arabidopsis 
and in Physcomitrella (Prusinkiewicz et al., 2009; Coudert et al., 
2015). In these models, modules of L-Systems have usually 
only a left and right neighbor, meaning that signal topology 
is one-dimensional. An extension of the concept of L-Systems 
to express signal topologies of higher than one dimension has 
been proposed in the form of Map L-systems (Lindenmayer 
and Rozenberg, 1978) or MGS (Giavitto and Michel, 2001). 
Although L-systems represent module topology not geometry, 
the modules can be interpreted geometrically and visualized 
using computer graphics techniques. L-Systems have been used 
for the simulation of development of whole plants (Allen et al., 
2005; Mündermann et al., 2005; Palubicki et al., 2009) and plant 
organs, such as shoots (Prusinkiewicz et al., 2007). In the latter 
case, different shoot architectures were obtained by the imple-
mentation of growth that was dependent on environmental 

Fig. 7.  Illustrations of Lattice-based methods for signaling representation. (A) Four simulation steps of a cellular automaton using a 1D grid. A state 
(white or black) is defined for each grid cell. One of five different transition rules is selected in each step. (B) Lattice-Gas method using a 2D grid, where 
a maximum of four discrete signal representations (agents) can be contained per grid cell. Black dots indicate cell locations occupied by an agent, white 
dots indicate empty locations. (C) Lattice-Boltzmann method using a 2D grid. Cell states are defined by continuous distribution functions (blue lines) that 
describe the bulk motion of signals. (D) Two time-steps (t0, tn) of a Cellular Potts method using a 2D grid. The cells shaded by the four colors form regions 
(t0); region areas can increase or remain the same (tn). The graphs at the top indicate the change of region topology.
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and exogenous factors. In the case of shoot branching in 
Physcomitrella (Coudert et  al., 2015), L-System modules were 
used to represent metamers and meristems of leafy shoots while 
also storing information about local auxin concentrations. Here, 
auxin was modeled as a continuous signal. The modules of the 
L-System were replaced by production rules that were selected 
based on their auxin concentrations, thus leading to the de-
velopment of plausible shoot architectures. Signal topology is 
in this case identical to shape topology (connectivity between 
metamers and meristems), showing that L-Systems can be ap-
plied to model both signaling and shoot growth.

In contrast to L-Systems, Vertex models use explicit geom-
etry, often defined by piecewise functions, to represent 
signaling. Vertex models have been used for a range of mor-
phogenetic patterns, in particular for modeling the growth 
of epithelial cells (Fletcher et al., 2014). In biomechanics and 
computer graphics they are also known as mass–spring models, 
Gaussian network models, or cell-systems, and among other 
things have been applied to represent the growth of plant tis-
sues as a result of mechanical interactions of cells, turgor pres-
sure, and mechanical properties of cell walls (de Boer et  al., 
1992; Hamant et  al., 2008; Corson et  al., 2009; Merks et  al., 
2011). Biomechanics of tissue can be modeled by elastic or 
viscoelastic springs that connect individual vertices and form 
polygons that represent cells (Dupuy et al., 2008). The turgor 
pressure of cells generates forces that are exerted on the vertices 
and that impose a tensile stress on the springs (Fig. 8B). Growth 
can be implemented locally or globally by increasing spring 
lengths or by adding new springs. The change of spring length 
can be controlled chemically (e.g. by hormones, enzymes) 
or mechanically (by Young’s modulus, Poisson ratio). Vertex 
models are commonly used for growth representations of the 
shoot apex (e.g. Hamant et al., 2008; Uyttewaal et al., 2012). 
For example, anisotropic growth is expressed by geometrically 
projecting cell wall directions onto a vector representing aver-
aged microtubule orientations (Hamant et al., 2008). The more 
parallel the cell wall directions are to the average microtubule 
orientation, the stiffer the spring constant values are set during 
growth simulation. This results in a differentiated distribution 
of spring constant values for cell walls, leading to the emer-
gence of anisotropic cell growth.

Mass–spring models represent biomechanics discretely via a 
number of virtual springs. Alternatively, continuous approaches 

of modeling mechanics using piecewise function representa-
tions of geometry also exist. When the plant structure is geo-
metrically relatively simple, finite difference methods can be 
used to approximate differential equations. For example, the 
signaling dynamics of morphogens on idealized geometries of 
plant form have been expressed in this way (Smith et al., 2006; 
Wabnik et  al., 2010; Abley et  al., 2013). However, when we 
assume plant shape to be complex, finite difference methods 
cease to easily approximate the continuous differential equa-
tions. For these more complex cases, Finite Element Methods 
(FEMs) can be used (Courant, 1994). These methods have seen 
success in material sciences as a means to analyse mechanical 
properties of structures. In plant biology, they were first ap-
plied to development in algae (Niklas, 1977) and to pollen 
tube growth Bolduc et al., 2006. FEMs have subsequently been 
employed to describe the biomechanics of plant cells and tis-
sues (Routier-Kierzkowska et  al., 2012; Fozard et  al., 2013; 
Bassel et al., 2014; Majda et al., 2017; Mosca et al., 2017; Sapala 
et al., 2018). Tissue is usually represented as a viscoelastic ma-
terial where lower-scale information, such as cells, is treated 
homogenously and averaged out. The main idea behind the 
FEM is to numerically approximate differential equations with 
piecewise linear (trial) functions defined in space (Fig. 8C). 
More precisely, FEMs are a way to approximate global func-
tions with systems of linear equations that can be solved nu-
merically in efficient ways. The trial functions are defined on 
the vertices of geometric elements (called finite elements) that 
represent the shape, and are usually triangular for 2D and tetra-
hedral for 3D representations (see Fig. 8C for an illustration of 
a 1D element). However, many other element definitions are 
possible, including higher-order polynomial ones. The mini-
mization of the error of the global function approximation 
depends on the geometry of the elements. Generally, smaller 
element sizes will result in more accurate approximations. This 
can be taken into account when constructing geometric rep-
resentations of dynamic plant shape.

Growth as the result of biological mechanisms can be rep-
resented mathematically with growth tensors (Hejnowicz 
and Romberger, 1984; Coen et  al., 2004; Nakielski, 2008). 
Approaches have been proposed that express mechanical con-
straints based on FEMs in 3D together with growth tensors 
that result from spatially represented morphogen action. For 
example, such models have been applied to simulate various 

Fig. 8.  Illustrations of Off-lattice methods for signaling representation. (A) L-Systems shown for three simulation steps. Different rules (R1–R3) are applied 
to an initial module, and the module states are indicated by the different colors. R1, R2 indicate context-free rules, whilst R3 a context-sensitive rule. 
(B) Mass–Spring model of a plant tissue with turgor pressure (P) and tensile stress (arrows). (C) Approximation process in the Finite Element method. 
A global non-linear function F (black line) defined over a 1D geometric domain is approximated by piecewise linear functions (red line, Fapprox.) with trial 
functions (triangles).
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patterns of phyllotaxy in Arabidopsis, the development of 
snapdragon flowers (Kennaway et  al., 2011), and growth in 
Arabidopsis leaves (Kuchen et al., 2012). Furthermore, FEMs 
have been used to simulate cell growth during morphogenesis 
of the shoot apex and flower meristem (Boudon et al., 2015). 
In this model, growth is expressed in terms of geometric trans-
formation matrices. Specifically, the model divides growth 
into an elastic and a plastic deformation expressed as strain 
and growth tensors. This continuous model of cell growth is 
discretized using FEMs in the following way. At each cell-wall 
junction, nodes are placed that define triangular finite elem-
ents. The geometric transformations are performed on the fi-
nite elements, thus leading to symplastic growth. Anisotropy is 
introduced when the elastic strain tensor is constructed with 
differing values of Young’s modulus. Mechanical properties of 
cell walls are expressed by a rigidity tensor. In this way, both 
the effects of biochemical and biomechanical signaling can be 
taken into account in a single transformation matrix.

Continuous space methods

In the least-verbose case of representing signal topology we 
would not store any topological information in data struc-
tures at all, but instead retrieve it in continuous space on de-
mand. This is especially desirable when representing signals 
in a discrete way. Such an approach is used in a variety of 
methods, namely Agent- or Particle-based, Discrete Element, 
or Smoothed Particle Hydrodynamics.

Particles are defined by at least a position in space, but often 
also have a velocity and other attributes such as mass or geom-
etry (Fig. 9A, B). Different distance metrics are defined to de-
termine the local neighborhood of a particle (e.g. L2-norm, 
or Manhattan distance). Interactions between particles take 
the form of simple probabilistic or deterministic rules. These 
local interactions at particle scale can generate complex pat-
terns at higher scales of organization (Macal and North, 2017). 
Particle-based methods were explored very early on in com-
putational biology to study the growth of branching structures 
(Cohen, 1967). In plant biology, they have been used to de-
scribe microtubule patterns (Deinum et al., 2017; Chakrabortty 
et al., 2018; Mirabet et al., 2018) and auxin transport (Garnett, 
2010). Mirabet et al. (2018) represented microtubules as sets of 

line segments in 3D space. In their model, microtubules can 
grow or shrink due to the addition or removal of line segments, 
interact with each other or with the cell surface, and respond 
to external signals. Particle methods have also been used to 
represent cells (Jönsson et al., 2006), as well as branch segments 
(Pirk et al., 2017), and architectural units of trees (Makowski 
et al., 2019). They are currently used in a wide range of appli-
cations (Holcombe et al., 2012) but seem to be less common in 
plant growth modeling.

Discrete Element Methods (DEMs) are a special case of the 
Particle-based method and emerged from material sciences 
to represent layers of different materials that can undergo sig-
nificant deformations in time (Guo and Curtis, 2015). Such 
dynamic cases are often computationally too costly to repre-
sent with other approaches, for example with finite element 
methods. The main concept of DEMs is to represent particles as 
simple geometric objects such as spheres (elements) in space on 
which a number of idealized forces can act. In many cases this 
involves repulsion, spring, adhesion and dampening forces (Fig. 
9C) (Van Liedekerke et al., 2015). Positions and possibly orien-
tations of elements are adjusted by mathematically integrating 
the resultant external forces. In practice, DEMs are known for 
having problems in representing the mechanics of very stiff 
materials due to the non-rigid connectivity specified by spring 
forces between elements. In the case of representing cells with 
particles, this can lead to unrealistic cell rearrangements that do 
not occur during symplastic plant growth. Despite these prob-
lems, they have been successfully employed in computational 
biology in recent years to represent the mechanics of tissues at 
the cellular and subcellular scale (Gardiner et al., 2015; Diels 
et al., 2016). Simple DEM models have been used to simulate 
growing shoot apices, where individual cells are represented by 
spheres constrained by hemi-spherical surfaces and the mech-
anical interactions occur based on repulsive forces between cell 
centers (Jönsson et al., 2006). Gruel et al. (2016) extended this 
method by including the continuous diffusion of gene prod-
ucts or hormones. The dynamics of these molecules were de-
fined for individual cells represented by geometric spheres.

A slightly more complex method compared to other particle-
based ones is Smoothed Particle Hydrodynamics (SPH), which 
is a representation for fluid motion that is used, for example, 
in computer graphics and fluid dynamics. As is the case for 

Fig. 9.  Illustrations of continuous space methods for signaling representation. (A) Particle-based method, with blue and red circles representing signals. 
(B) Signal topology is calculated locally for individual particles (red) using distance metrics (grey disk). (C) Discrete element method, with mechanical 
forces between particles: spring and damping forces account for the viscoelastic behavior. Fn, normal forces; Fs, shear forces. (D) Smooth particle 
hydrodynamics. A local neighborhood of a particle (red) is defined by a distance metric (grey disk) over which interaction properties are smoothed by a 
kernel function (W).
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other particle-based methods, the SPH method represents 
signals discretely with particles. The main distinction of SPH 
compared to other methods operating in continuous space is 
that particle interactions are expressed with local interpolation 
or kernel functions, such as Gaussian functions. These kernel 
functions allow particle interactions to be formulated relative 
to their distances from each other (Fig. 9D). Far-away par-
ticles, for example, can interact more weakly with each other 
than closer ones, resulting in a phenomenon called ‘smoothing 
length’. To efficiently utilize SPH methods, the size of the radii 
of kernel functions is usually varied in space and time so that 
the resolution of the simulation can adapt itself to the local 
density of particles. This strikes a good balance between ac-
curacy and performance. Examples where such methods have 
been employed in computational biology include simulations 
of the mechanics of plant and animal cells (Van Liedekerke 
et al., 2010).

In summary, analogously to the shape representations de-
scribed earlier, we can distinguish characteristics of signal rep-
resentations in terms of their verbosity and complexity (Fig. 
6). Thus, Lattice-based methods are the most verbose but least 
complex representations, followed by Off-Lattice methods 
where the connectivity between signal representations is ex-
plicit but not fixed in space. On the other hand, methods that 
rely on continuous space seem to be the most complex, because 
in this case topology is determined on demand. Theoretically, 
determining the local signal topology for one particle has to 
take into consideration all the other particles, which results in a 
quadratic time complexity. This constitutes a demand in calcu-
lation time that prevents most simulations from being comput-
able in real time. Therefore, the computational implementation 
of continuous space methods is usually coupled with spatial 
partitioning (e.g. lattices) to exclude evaluations of distant par-
ticles, which improves performance significantly but makes the 
representation more verbose.

Another relevant aspect for modeling morphogenesis is 
the flexibility of the representations in accommodating topo-
logical changes. This may be less of an issue when modeling 
phenomena without significant changes in signal topology, but 
can be important in other cases. For example, the simulation of 
wound healing in response to grafting or tearing of tissue re-
quires dynamic changes of topology to generate adequate ap-
proximations. In this regard, to accommodate such topological 
changes the three categories of methods can be treated simi-
larly to their geometric counterparts: lattice-based methods 
are the least flexible description as they are defined by an ex-
plicit, temporally fixed topology; off-lattice methods represent 
signal topology explicitly, but the topology needs not be fixed 
in time; and continuous space methods are the most flexible, as 
signal topology is defined implicitly by providing local distance 
functions for this purpose.

Discussion

We shall refrain from exhaustively analysing all these methods 
and conclude this review by pointing out that the signal and 
shape representations discussed here are by no means exclusive. 

They can be readily used in conjunction with each other to 
jointly describe biological growth. Fr example, Mkrtchyan 
et  al. (2014) proposed a description of the epithelium that 
combines both a particle-based and vertex model. In this de-
scription, cell membranes were represented as mass–spring 
systems whilst advection of entire cells was described using 
a particle-based method. In plant biology, the simulation of 
large deformations in tissues has been accomplished by a mass–
spring model representing individual cells whilst macroscopic 
tissue properties are represented by a finite element method 
(Ghysels et  al., 2009). Generally, a multi-scale model such as 
this allows specific signal representations to be expressed with 
different topologies and therefore may reflect underlying bio-
logical hypotheses more efficiently. Formalisms specifically 
prepared for such multi-scale descriptions of plant morpho-
genesis have been developed in recent years (Boudon et  al., 
2015; Refahi et al., 2016). It seems to us that determining ap-
propriate scales of abstraction to express shape and signal top-
ologies should generally precede quantitative descriptions of 
signal action when formulating models of morphogenesis.

Finding adequate scales of abstraction for a particular de-
scription of plant growth may not be immediately obvious. 
Generally, the discrete approach is arguably the more intuitive 
one, as humans tend to describe the world in rather discrete 
terms. Specifically, the use of simple rules that characterize signal 
action in the discrete approach is often a distinct advantage. 
Over a given time period, it usually allows a greater number 
of different biological hypotheses to be expressed compared 
to the continuous approach, which operates at a higher level 
of abstraction. For example, the difference between a model 
where two signals either inhibit or promote each other can 
usually be expressed by only changing a single interaction rule 
in the discrete approach. This can often be accomplished even 
during the simulation time, enabling immediate evaluation by 
the modeler. This advantage lends itself very well to studying 
patterns characterized by a high degree of self-organization 
(Deinum et al., 2017). The mathematical description of a large 
number of discrete elements, however, can become complex. 
Furthermore, higher-scale patterns arising due to local inter-
actions between elements can be difficult to comprehend due 
to the lack of efficient analytical tools.

On the other hand, the continuous approach allows signaling 
with functions to be described. Thus, relations between vari-
ables are expressed in a very parsimonious way. Continuous rep-
resentations of patterning processes also lend themselves well to 
mathematical analysis. Examples of succinct biological relations 
elucidated by formal analysis can be found in the description of 
pollen tube growth, where cell radius is described as a function 
of turgor pressure and the secretion rate of the cell wall ma-
terial (Campàs and Mahadevan, 2009), or in branch curvature in 
plants in terms of graviceptive and proprioceptive sensitivities 
(Bastien et al., 2013). While the representation of biological pat-
tern formation with continuous functions can lead to insightful 
biological laws, their formulation is by no means a trivial task. 
Theoretical biology seems to be less successful in this regard 
compared to other areas of research, for example physics where 
very accurate laws of nature have been formulated.
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Reflecting on the relative merits and drawbacks of the dis-
crete and continuous methods of representation of signaling 
leads us to conclude this review with a bold prediction. In 
light of the lack of simple, abstract laws of morphogenesis that 
unify biomechanical and biochemical signal action, we be-
lieve that the advantage provided by the discrete signal rep-
resentation method of being able to quickly evaluate different 
biological hypotheses will see a gradual shift towards this ap-
proach. Consequently, we predict that particle-based methods, 
currently used to a lesser degree compared to other methods 
within the theoretical plant research community, will see an 
increase in popularity in the future.
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