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ABSTRACT
A formal representation of neuron morphology, adequate for the geometric modeling of manually-traced neu-

rons, is presented. The concept of a stochastic L-system is then introduced and the critical distribution functions
governing the stochastic generation of dendritic and axonal trees are defined. Experiments with various stochastic
L-system models for pyramidal, motoneuron, and Purkinje cells are reported which generate synthetic neurons
with promising proximity to neurons in the neurobiology literature. Work is in progress to improve this de-
gree of proximity, but more importantly to validate the derived stochastic models against available databases of
manually-traced neurons. To this end a neuron morphology modeler is described which provides a methodology
for iterative refinement of the stochastic L-system model.

1 RESEARCH SUMMARY
Two specific results of this research are methods to:

1. Generate a representative population of several neuron types (pyramidal, motoneuron, and Purkinje cells)
from stochastic L-system models of these neuron morphologies; and

2. Validate the derived models against available databases of manually-traced cells.

Methods to parallelize these L-system models to grow graphical models of brain nuclei and other neural tissue
are discussed.

2 MOTIVATION
L-systems were first proposed by Aristid Lindenmayer in 1968 as a mathematical theory to model the growth

and morphology of simple plants.2'6 Turtle geometric interpretation of the strings generated by the L-system
grammar allows the geometric modeling of plants. Today L;systems are an accepted tool in plant modeling.
Neurons, scaled by i05, show a strong resemblance to trees. This similarity led us to harness the power of L-
systems to produce geometric models of neurons. Though neurons and glial cells, unlike plants, are composed
of a single cell, analogous formal L-system methods are described below to generate neuron-like structures using
separate subgrammars for the dendritic and axonal processes.

All models in this work are presently limited to modeling neuron morphologies at the limit of optical resolution.
In particular spines are not presently included, except in a superficial way. Furthermore, fiber tracts and fiber
terminations on cells are not presently modeled.

The applications of these L-system models are severalfold. First, the L-system morphological models bring
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coherence to existing databases of neurons. They allow us to estimate the new information contributed by
additional measurements of the neuron morphology.

Secondly, neurons are packed in a volume—filling manner into neural tissue, posing a barrier to visualization
and interpretation of neural tissue scanned at the limit of optical resolution. New developments in confocal
microscopy and multi-terabyte mass storage offer the potential for massively parallel tracing of fibers and other
neuron processes in neural tissue, even at the scale of an entire rat brain. The interpretation of these massive
volumetric data sets will rest on having creditable models of neuron morphology. Furthermore, because of the
close juxtaposition of neurons, existing volume visualization methods, such as the marching cubes algorithm or
the Levoy algorithm, would portray only a dense and confused volume. What is needed are object-oriented models
for these volumetric databases of neural circuitry.

Finally, volume-filling tissue, because of interference between neighboring cell processes, can not be assembled
from a collection of independently-generated neurons and glial cells. We believe the only creditable way to
graphically generate morphological models of brain tissue is to mimic the growth processes of developmental
neurobiology.

3 REPRESENTATION OF NEURON MORPHOLOGY
3.1 Terminology for neuron morphology

The constituents of a neuron are its soma, one or more dendritic trees (also called dendritic arbors), and its
axon or axonal tree.(Figure 1 left)

Given a dendritic tree, three types of nodes are identified: (1) the soma node representing the point of
attachment of the tree to the soma; (2) branch points at which the dendrite branches; and (3) terminal nodes, the
endpoints of the tree. Starting at the soma node a unique path exists to any other node of the dendritic arbor.

A dendriiic segment is the portion between two consecutive nodes in the dendritic tree. The stem segment has
its origin at the soma node and is counted as the first order segment. Daughter segments arising from the first
order branch point are called second order segments, and so on. A segment ending in a terminal node is called a
terminal segment; all others are called non4errninal segments.

The junction at a branch point is called a bifurcation if the parent segment branches into two daughter
segments, and a muliifurcalion if the junction gives rise to more than two daughter segments.

Axonal processes, including axonal arbors if present, are described by nodes, segments, and junctions in like
manner, as discussed above for dendritic trees.

Terminal Node

initial reference frame

SegmentOrder 2
Branch Point

Sc rtorri Intrasegmeri points

Root Node
(Dendritic tree 1

.
)

.-
Soma

(l)eodritic tree 2)

Left: Dendritic tree representation. Right: Segment representation

Figure 1 : Representation of neuron morphology

3.2 Representation of segments
3.2.1 Segments are represented as generalized cylinders

Segments are represented by generalized cylinders (Figure 1 right) whose central trajectory spans between the
initial and final nodes of the segment. The length of the segment is defined as the integrated arc length of its
trajectory between these two nodes. The diameter of the segment is in general a function of position along the
trajectory. Two simple models are to assume (1) constant diameter, or (2) a tapering diameter characterized by

694 I SPIE Vol. 2359

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/05/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



the initial and final diameters.

3.2.2 The segment trajectory defines a local reference frame
Segments may be visualized as a tube with a fibrous internal structure (e.g., microtubules) which, like a

plant stem, may impart stiffness against twisting. To accommodate this contingency we define a local coordinate
system, or frame, with origin at any point P along its trajectory. The first axis is selected to lie along the unit
tangeni vecior t at a point P; the other two axes lie in the cross-sectional plane at P, whose normal is t. The
second axis with unit vector b, called the binorrnal vector, is chosen in this cross-sectional plane to reflect the
orientation of the segment, or tube, about its tangent vector. (We can think of the b vector, as it sweeps along the
trajectory, as "painting" a longitudinal stripe along the tube where it pierces the tube.) The third orthonormal
vector of the right-handed coordinate system, m, called the main normal vector, is given by m = b A t, where
"A" represents a cross product.

But for dendritic or axonal segments, in the absence of a longitudinal stripe or access to the internal distribution
of microtubules, how does one define a local frame along the segment trajectory in some natural way from the
available information? The answer is to evoke a special local cartesian coordinate system, called the Frenet frame,
linked to a point x(s) on segment trajectory, as parameterized by s.9 The Frenet frame is defined by the triplet
(t m b) of orthonormal vectors, where we retain the same names for these vectors as above; in particular t is the
tangent vector (Figure 2 left). These vectors are now computed from the intrinsic geometry of the trajectory:

t=- m=bAt b= XAX (1)
lxii lixAxil

where ".": means derivative with respect to s, and all required derivatives are assumed to exist. In essence the
binormal b, computed from the local curvature, serves to define the "longitudinal stripe" of our illustration. The
geometric interpretation of these vectors is straightforward. The vector t points along the trajectory at x(s); b
is the normal to the plane containing the osculating circle which passes through the point x(s); and m points to
the center of the osculating circle. For curves traditionally used in computer graphics, such as Bezier curves, the
Frenet frame is readily computable, as also are the curvature ic and torsion r at x(s).

1:
-4-

m
#

I
t

Left: The Frenet frame in 3D Right: Rotations of the reference frame.

Figure 2: The reference frame

In summary the reference frame is defined along the segment trajectory. Its computation requires specification
and parameterization of the segment trajectory but makes no reference to the additional information necessary
to specify the generalized cylinder of the segment.

3.2.3 Segment placement iii the dendritic or axonal arbor
The dendritic (axonal tree) is fully characterized by its segments. A segment, in turn, is represented by (1) its

trajectory, (2) the additional information to specify its generalized cylinder, and finally (3) its placement in the
dendritic (axonal) arbor. For the trajectory this information consists of the initial and final nodes, the trajectory
between these nodes and its arc length, the initial and final reference frames, and the integrated torsion, or twist,
of the local reference frame as it traverses the trajectory. The additional information to specify the generalized
cylinder consists of the diameter, which may taper along the segment, and the distribution of spines and bouton
on the surface of the generalized cylinder, if observed. Finally tree placement information consists of segment
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Left: The generic bifurcation and exit angles Righi: Spherical coordinates (,O) and twist ()
describing relative orientation of the reference frame for segment S (i = 2, 3)

Figure 3: The bifurcation in spherical coordinates

Conceptually the bifurcation can be modeled as a physical piece of plumbing, a "Y"-joint, into which three
segment "pipes" Si , 52, and 53 can be screwed. By screwing in the pipes and tightening, each pipe is given
a terminal orientation about its axis, defined by the binormal vector b2 (i=1,2,3) of the segment at the branch
point. Apart from these three terminal segment twists, we can give an invariant geometric description of the
junction as a rigid body by specifying the angles 012, °13, and 23 between the three segment tangent vectors and
its chirility C (-1, 0, 1). Bifurcations with opposite chirility are mirror reflections of one another. Specifically, if
the segments Si , 52, and 53 are modeled respectively by the wrist, thumb and first finger of the right hand, then
the chirility is 1; ifS1, $2, $3 lie in a common plane, the chirility is 0;, and if left-handed, -1 (Figure 4).

It proves convenient to express the tangent vectors t2 and t3 of the daughter segments in spherical coordinates
(92,c52) and (9,ç) respectively in the reference frame defined by the parent segment, with polar axis t1(Figure 3
righi):

ti = (0,0,1)
ti = for i=2, 3

Hence we derive
cos 23 t2.t3 = cos 02 cos 03 + sin 02 sin 03 cos(2 —

and observe
C = —sgn(ti .(t2 A t3)) = sin °2 sin 03 sin(2 — (5)

is uniquely defined by the invariant geometry of the junction.
Recapping, the bifurcation is fully specified by two 3-dimensional rotations, 12 and 73, about the branch

point which transform the final reference frame of parent segment Si into the initial reference frame of daughter
segment $2 and $3 respectively. In particular, these rotations specify how the tangent vector t1 of the parent
segment at the branch point is transformed in the initial segment tangents t2 and t3 respectively. Segments,
however, also have thickness and internal structure (e.g., microtubular structure) which may define an intrinsic

* Mathematically speaking, the three trajectories characterizing $, 82, and83 could fail to extrapolate to a common branch point.
We ignore this source of error as being insignificant in practice
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order (stem or first, second, . . .), and whether the segment is terminal or non-terminal, as characterized by the
final node of the segment.

3.3 Representation of junctions
3.3.1 Geometry of the bifurcation model

A generic bifurcation is exhibited in Figure 3 left. The trajectories of the parent segment S and the two
daughter segments, 82 and 83, meet at a common point called the branch point of the junction. In Figure 3
left these segments are shown truncated. The length and diameter of these stubs, however, is irrelevant, as all
significant properties of the junction are extrapolated to the branch point.* The order of a junction is defined to
be that of its parent segment $.
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orientation of the segment about its tangent. Accordingly the rotation 'R (i = 2, 3) specifies (1) the rotation of
ti into t2, and (2) the final 2-D rotation (twist b) about t2 which sets up the initial alignment of the daughter
segment S (Figure 3 righi).

Formally, let the rotation 1(4, 9, tI) about the branch point transform the reference frame F1(t1, m1, b1)
of the parent segment into the reference frame F1(t, m1, b) (i = 2, 3) of daughter segment S. The rotation is
expressed as the product of three successive 2-D rotations:

ei, tb) = (6)

where 5 is the azimuthal rotation about t1, and 9 is the latitudinal rotation about (t1 At2)/11t1 Atill, the rotated
b1 binormal. These two rotations carry t1 into t1. Finally i,b is the rotation (twist) about the t1 axis which
defines the initial orientation of segment S . If S has a straight or piecewise linear trajectory this final "twist"
about t is not needed, and t,L' = 0.

3.3.2 Extension to multifurcations
Multifurcations, those junctions in which more than two daughter segments participate, are relatively rare.

For example, almost all junctions in motoneurons of the rat are bifurcations, while trifurcations account for i%.
We observed above that the rotation 7 (q5 ,8 , i,b) to rotate from the parent reference frame . to .T , the

reference frame of the daughter segment S, could be described as the product of three successive axial rotations.
We retain the same convention for multifurcations, though the number of daughter segments is now greater than
two.

3.3.3 Diameter dependence and Rail's ratio
By convention we designate segment 52 to be the daughter segment of largest diameter. Thus 52 serves as

the principal limb emerging from the parent segment at the junction.
Rall has predicted on the basis of a passive electrical model of dendrite segments that R, called Rall's ratio,

given by ((Vghter))/(Dp'ent) should be 1. For niotoneurons R is approximately one.10 We assume a default
value of R = 1 for Rall's ratio in the absence of direct evidence from manually-traced neurons

3.4 Representation of somata and their environment
For synthetic neurons, similar in scale to those shown in section 6, the soma can be modeled by an ellipsoid or

a sphere, or for pyramidal cells by a truncated cone. These axially symmetric models require two form factors7:

S soma cross-seclional area (SCA3) - from 2D projection onto the sagittal plane, and

• soma diameter 'V,) - the diameter of a circle with the same cross sectional area.

The soma, as a rigid body, requires a soma position and orientation relative to the rostral (R), lateral (L),
and dorsal (D) anatomical axes of the nucleus (Figure 5), or for cortical neurons, relative to the local cortical
surface normal.

At higher resolution, and for the bulbous somata of the autonomic nervous system, we suggest modeling somata
by conventional 3D reconstruction. Somata, of course, can be viewed as particularly plump segments and like
segments, represented as generalized cylinders about a central trajectory. We suggest that this trajectory initiate
at the axon hillock and pass through the centrum of the soma. However, so few soma have been reconstructed in
3D that we are unable to give further guidance at this time.
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Figure 5: Position and relative orientation of soma

4 OVERVIEW OF L-SYSTEM MODELING
4.1 L-system grammar for generate strings of terminal symbols

A grammar consists of a partitioned set of symbols (non-lerminal symbols including the sian symbol and
ierminal symbols) and a set of replacement rules called produclions. In the context-free grammars considered
here, the left hand side of a production designates a non-terminal symbol: its right hand side designates a finite
string of symbols, optionally both terminal and non-terminal. To apply a production in an L-grammar, all non-
terminal symbols in the string generated so far which match the non-terminal symbol of the left hand side of the
production are replaced in parallelby the right-hand-side ofthe production. Paired brackets, a.s terminal symbols,
may be embedded in the string recursively. Productions are applied until the string so generated contains only
terminal symbols.

It is convenient to map a string generated by the L-system into an equivalent tree format. A bracketed list of
terminal symbols, where the bracketed are paired, can be mapped into a finite tree as follows: the root of the tree
is labeled by the start symbol, each non-terminal node of the tree corresponds to a (bracketed) list of terminal
symbols, and finally terminal nodes are labeled by terminal symbols of the string while preserving their order in
the string

4.2 Turtle rotations are defined in the local reference frame
The terminal symbols of the L-grammar are interpreted graphically as commands for turtle reorientation and

movement. These symbols instruct the turtle to trace a path in the 3-dimensional space. The term "turtle" is
traditionally used as the turtle conveys not only a position in space, but also its orientation; that is, the turtle
defines a local frame of reference (t, m, b) which we shall identify with the reference frame.

Six terminal symbols are reserved to signify rotations of the turtle in its local reference frame (Figure 2 rig/il).
These are ("\", "/") for tangential rotations about t; ("&", "A") for rotations about main normal vector m; and
("+" , " -") for rotations about the binormal b.

4.3 The reference frame can be generalized to piecewise linear trajectories

. . . . i±1

final point

Figure 6: Piecewise linear trajectory

Piecewise linear trajectories occur as approximations to segment trajectories and as describing the path be-
tween two nodes in the dendritic or axonal tree. For piecewise linear segment trajectories (Figure 6), the initial
and final points of the trajectory are called external knots: all other knots of the piecewise linear curve are called
internal knots.The tangent vector t is defined as a piecewise constant, which changes discontinuously at internal
knots. But b, and hence m, are not computable from Eqn 1. Therefore we introduce the following generalization
of the reference frame for piecewise linear trajectories. At an internal knot define b and m as follows

= m = b1 At1 (7)
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Then define the generalized reference frame along the trajectory as a piecewise constant function: the reference
frame from the initial point is translated without rotation to the second knot point, at this knot t, m and b are
computed by Eqn 7 and this reference frame propagated to the next knot, and so on. The final node carries the
reference frame computed at its next-to-last knot. For straight trajectories and their generalization, piecewise
linear trajectories, the initial orientation of the binormal vector b cannot be computed from the segment trajectory
alone but requires reference to the branch point and parent segment from which the daughter segment arose. We
shall define b to be normal to the plane defined by these two segments. Finally for a stem segment having a
piecewise linear trajectory, we assign an initial orientation to the b vector derived from the coordinate system
used to describe the soma.

4.4 Lsystems can generate geometric models
An L-system grammar generates a parenthesized strings of terminal symbols. Each terminal symbol serves

to orient or generate a geometric model of a constituent part of the organism. For modeling dendritic or axonal
trees, the principal constituent parts are segments, which are realized as generalized cylinders and may be of
several classes, and junctions, from which grow subtrees. Figure 7 illustrates the generation a a simple junction

Figure 7: A simple grammar that generates a junction

by an L-system. In this simple grammar, the segments are straight black lines.

4.5 Depth-first generation of the dendritic tree
Terminal symbols which represent segments are realized as generalized cylinders swept out as the turtle

traverses the trajectory of the segment.
At terminal symbols which represent junctions (signalled by a "[" symbol in the string representation; and

equivalently by a non-terminal node in its tree representation) the turtle is reoriented as specified by the first of
the list of rotations specifying the junction. The daughter segment 82, and its associated subtrees, are swept out
in a depth-first traversal of the tree. The turtle, backtracking at each occurrence of a "]" symbol, finally returns
to its prior orientation at the original junction, the reference frame of segment Si . Then the turtle begins anew
to traverse in a similar manner the subtrees blossoming from $3 (and other segments, if a multifurcation). In this
manner the turtle completes a depth-first traversal of the tree and by this process generates a geometric model
ofthe neuron.

4.6 Stochastic L-systems generate populations of neurons
A stochastic L-system proceeds as above, but the value of segment parameters and the rotation angles emerging

from a branch point are now random variables drawn from appropriate distribution function. In short the terminal
symbols designate the appropriate distribution function, as for example the length of a given kind of segment.

In general these distribution functions will depend not only on neuron type, and possibly its the depth in the
cortex, but also on the type of dendritic arbor. For example apical and basal dendritic trees of a pyramidal cell
are generated by different subgrammars, and will have different distribution functions controlling segment length
and branch point exit angles.
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5 STOCHASTIC GENERATION OF NEURONS
5.1 Premises

Stochastic generation of neurons makes several simplifying hypotheses:

. Each dendritic tree develops independently.

. Segments develop independently, though they may exhibit tropism in the presence of a shared external force
field or conform to a common nucleus boundary.

. Segment length is a random variable whose distribution function is both class and order dependent.

. Each class of segments of order n is assigned a probability of non-termination Pt(fl). Typically P(n) is
a monotonically decreasing function of n, as illustrated in Figure 8.

Figure 8: Typical probability that segment is non-terminal vs segment order

. Bifurcations and multifurcations develop independently, but are conditional upon the class of the parent
and daughter segments.

. Thejunction probability density function describing the distribution ofbranch point exit angles (and twists,
if any) can order dependent.

S Both segment and junction distribution functions can depend on the position of the soma in the neural
tissue, (e.g., pyramidal cells exhibit scale dependence upon their depth in the cortex).

5.2 Generation of segments
The stochastic generation of segments attempts to simulate the growth process of the neurobiological segment

but from a coarser grain perspective. We distinguish three models of the environment for this growth:

S the isoiropic model, where in the absence of environmental forces we assume that segment growth is deter-
mined solely by its local reference frame;

S ihe force field model, where an external force field provides a tropism for growth. The apical dendritic trees
of pyramidal cells, for example, exhibit tropism and grow predominantly toward the cortical surface. Using
the context-sensitive, parametric L-grammars, we can also generate neurons whose growth conforms to the
surface boundary of an encompassing nucleus. The nucleus boundaries can be specified as implicit functions
in the model space. The distance from the surface and the angle made with the surface can be used as
parameters to reorient the direction of growth. These parameters are adjusted with each generation of
rewriting, and so this mechanism provides a feedback to the L-system about whether or not a reorientation
in needed for the next stage of growth.2

• the 3D grid model, where a boundary-conforming grid is imposed throughout the body of the brain nucleus
or architectonic area. The grid imposes, by interpolation, a curvilinear coordinate system throughout the
neural tissue. Segment generation is then prejudiced to conform to this local coordinate system. For
example, Purkinje cells develop as if conforming to planar glial trellises.
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The force field model and the 3D grid model can be viewed as alternative statements of the same model. We
sketch this correspondence briefly below. The force field f(x) is assumed acyclic, that is curl f(x) = 0. The force
f can then be derived as the gradient of a scalar potential , that is f = V. Now we design the potential '1
such that the nucleus boundary is an iso—surface of , and hence VI is the local inward-pointing surface normal.
Setting f = V1 sets up a repulsive force field, which bends ramifying segments of the dendritic tree to conform
to the nucleus surface (e.g., the cortical surface).

5.3 Generation of junctions
An individual junction has been represented, as described above, as a list of rotations, where each rotation in

turn transforms the reference frame of the parent segment into the reference frame of a daughter segment. The
stochastic generation of junctions (of given order and segment classes) requires that we specify the conditional
probability density for these concurrent frame rotations.

To illustrate the concept, consider a bifurcation for which the incident trajectory bifurcates ("scatters") into
daughter trajectories (2, 92, t/'2) for 82 and (, 03, t/)3) for 83. The differential probability for this event is

P(2,92,',b2,3,O3,t,b3In,S2,S3)dw2dtI'2dw3di53 (8)

where dw2 and dw3 are the differential solid angles given by

dw1 = sin O1dGdç' for i=2, 3 (9)

The observant reader will recognize that the statistical distribution ofjunctions, as necessary for their stochas-
tic generation, directly parallels the S-matrix theory for particle scattering in theoretical nuclear physics." In
fact, if segments have an inherent orientation (as defined by their reference frame) then this additional compli-
cation plays a role comparable to polarization for particle beams (which also require the definition of a local
reference frame for each beam). However we shall defer further development of this correspondence between the
junction distribution functions and the S-matrix formalism until subsequent papers.

5.4 Generation of a forest
Typically only a sparse "forest" consisting of 0.01-0.1% of the cells in a nucleus/architectonic area (in the

rat) are displayed simultaneously, with the choice of cells to be displayed under investigator control. We offer
different classes of non-uniform distributions of neurons in 3D space, such as the Poisson, the Poisson sphere and
the jittered distributions. A 'seed' for a neuron may be planted in 3 D space according to the distribution. This
allows an investigator to conduct studies with controlled variation in population densities of neurons.

An additional and particularly significant environmental influence must be built into the L-grammars when
parallel growth of neurons is being considered. An important inviolable constraint is imposed by the fact that
space is not a shared resource. So one must prevent processes ofone neuron from encroaching into space occupied
by some other during growth. We call this the inerseciion problem. Intersections can be avoided by building in
feedback in the L-grammar about the current state of the string generated. Each production must be applied
conditionally, constrained that the result of the production will not result in the violation of the space rights. We
are making the necessary modifications in the isys software for this purpose.

6 GROWTH OF SAMPLE NEURON POPULATIONS
6.1 Introduction

The L-grammar we use consists of terminal symbols that are commands for the turtle. The turtle can turn
around its three principal axes and can thus point into the direction in which the primary and secondary segments
need to be grown. The growth ofthe primary and secondary segments at the branch point involves calculation of
the exit angles by which the turtle needs to turn, pitch and then twist before sending off the turtle in this new
orientation. Since neurons are not like chemical molecules, these angles are distribution functions rather than
single fixed values (delta function distributions). These angular distributions must be provided by the statistical
analysis of the measured neuron morphology databases. For instance, through a statistical analyzer it may be
discovered that the branching angle between the primary and secondary segments is a normal distribution with a
mean of 60 degrees and a standard deviation of 20 degrees for a given neuron type. Or it may be found that the
primary and secondary segments have absolutely no idea of each others growth and bifurcate quite independently
from the branch point. Mathematically speaking, their exit angles are uncorrelated, and their probability density
function, P(q2, 92, b2, 03, l/3) = P2(c2, 02, b2),P3(3, 03, b3), factors into independent probabilities of each
daughter segment. These conclusions can be used in the stochastic L-gramma.rs to provide values for turn, pitch
and twist of the turtle.
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6.2 Pyramidal, motoneuron, and Purkinje cells
Pictures of different neuron types that were generated using the stochastic L-system synthesizer after estimates

of the distribution functions were supplied, are shown in Figure 9.

Figure 9: Sample neurons

The current grammars assume normal distribution functions. The mean and standard deviation of the pa-
rameters are supplied through the grammar. For instance, if the the distribution of ç2 , 92 and 9 are known,
then the angle 023 can be computed. However as the angles are extracted from a distribution their values have
to be checked against geometrical constraints like 912 + 63 + 923 360 and 23 � abs(92 — Os).

The diameters of the daughter segments and the parent segment are calculated from the parent segment's
diameter, the distribution estimate for the diameter of the primary segment and Rall's ratio set to 1.

A Purkinje neuron has a relatively planar architecture. Even though its individual segments are not in a
perfect plane, the cell somehow maintains a mean planar character as ifthere were two invisible walls between
which this cell is sandwiched. To control the individual twists from destroying this overall planar character and
yet avoid perfectly planar dendritic arborization, the turtle is influenced by a kind of tropic effect. The current
turtle direction is mirrored with respect to the normal of the plane of the Purkinje cell. This forces the segments
of the alternate orders to return back to the plane and hence prevents a propagating deviation from destroying
the planarity of the cell.

A typical rat motoneuron has from 6 to 12 first order dendritic segments, with the mean diameter ranging
from 4.4 to 6.8pm.7 The maximum segment order ranges from 8 to 12. Almost all branching is dichotomous. On
an average, each dendrite has 27 segments, 13 branch points, and 14 terminations. By calculating the ratio of
the number of segments at order n to that at order n+1, one can estimate the probability of non-termination.
This estimate was used in the stochastic application of productions of the L-grammar to produce the motoneuron
shown in Figure 9.

Once a grammar model for a particular neuron morphology is perfected, it can be used to generate a population
of its types. Since the parameters of the grammar are pulled out from their distribution functions, no two cells
will be identical yet they will all be similar. Figure 9 shows such a population of pyramidal neurons.
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As an application of the force field model, consider the flat nature of the apical dendritic arbor of a pyramidal
neuron morphology. To achieve this flat character, a vector field along the vertical axis of the cell was applied at
the point when the turtle is generating segments of this flat arbor. If the turtle is made to reorient itself such
that it is always headed in the direction perpendicular to the vector field, the required flatness is simulated. This
realignment force is an exponential function of the turtle's position from the surface; the effect being negligible
away from the surface and strongest at it.

Currently only spherical boundaries are available, but other shapes can be easily implemented. These shapes
are also specifiable in the grammar rules and can be propagated or bracketed in order to achieve global as well
as local boundaries.

6.3 Stochastic seeding of neuron populations
The population morphological data can be obtained in two ways:

1. by invoking the same grammar as many times as the number of required cells; or

2. by introducing a higher level production in the grammar which distributes the neurons by walking the turtle
in model space and planting the somata of the neurons. This gives a stochastic L-system grammar for a
neuron population.

Although the latter approach seems more elegant, the system and memory restrictions may force the first approach
to be adopted if the number of neurons required is fairly large.

Different seeding distributions can be invoked from within the grammar by adding these distribution functions
to our neuron generator, just like the normal distribution has been made a part of the system. Some such
distributions are the Poisson, the Poisson Sphere and the jittered distributions. In case the second approach is
used, these distribution functions can be used to walk the turtle to generate the population.

7 NEURON MORPHOLOGY MODELER
Experiments with various stochastic L-system models of neuron morphology have given us neurons with

promising proximity in shape to neurons illustrated in the neurobiology literature. Work is in progress to improve
this degree of proximity, but more importantly to validate the L-system neuron models against databases of
manually-traced neurons. To this end the Neuron Morphology Modeler (NMM), described below, has been
devised to provide for iterative refinement of L-system models (Figure 10).

17.1 Data level of the modeler
Central to the scheme at the data level is an objeci-orienied neuron morphology dalabase (Paradox, Borland

International, Scotts Valley, CA). This DBMS stores for each neuron a representation of its soma and for each
dendritic or axonal tree a representation of its segments and junctions, as described above.

This DBMS can receive input (at the data level) from the neuron iracer (Neuron Tracing System, Eutectic
Electronics, Inc., Raleigh, NC) or (at the knowledge level) from the L-system neuron generaior (a derivative of
public-domain software known as isys, copyright (c) 1990, 1991 by Jonathan Leech, University of North Carolina).
In this sense the DBMS is indifferent as to whether it is storing data from real manually-traced neurons or L-
system-generated synthetic neurons.

Upon command, the DBMS can prepare database files for the spreadsheei program (Excel, Version 4.0, Mi-
crosoft Corporation). The spreadsheet program allows data editing and graphical summarization.

Spreadsheets, in turn, providethe conventional input to the saLisiical analyzer (Systat, Version 5.03, Systat
Inc., Evanston, IL). In particular the statistical analyzer estimates the distribution functions for segment non-
termination, segment length and trajectory generation, and the rotations characterizing bifurcations. At present
only ad hoc techniques are available for using Systat for this purpose.

7.2 Knowledge level of the modeler
We now enter the knowledge level (Figure 10) where the parametric statistical dependencies and distribution

functions ascertained by the statistical analyzer are used to refine the L-system models of the neuron population.
The L-system synthesizer is presently little more than a convenient name for the collection of ad hoc rules which
effect the L-system modifications.

Next, paralleling the neuron morphology DBMS, we have at the knowledge level the neuron morphology
knowledge base, which stores the L-system grammars and their associated distribution functions for stochastic
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Control + Graphical User Interface

generation of synthetic neurons.
And finally, closing the ioop, we return to the neuron generaior, described above.
With experience we anticipate that the system components at the knowledge level will merge into an expert-

system-driven simulation system. The data level NMM provides the external environment for this knowledge-level
subsystem. The long term goal, of course, is for the knowledge level subsystem to converge upon a stochastic
L-system model such that the input from real manually-measured neurons and synthesized neurons can not be
statistically distinguished.

7.3 Visualization facilities
Display of neurons (manually-traced or synthetically generated) in 3D uses the principal application program-

ming interface in graphics (GL, Silicon Graphics, Inc.) running on either an Iris or Onyx graphical workstation.
The neuron generator isys outputs segments in the turtle order to an output file. This file, after filtering, drives
GL. We anticipate moving the visualization facilities to OpenGL, which will be available on the PC. Our goal is
to run the entire neuron morphology modeler on a single machine, a high-end PC.

Additional visualization software developed by Brent Burton, Texas A&M University, changes the stick figures
of isys into 3D volumes. Burton is also developing a navigator to traverse graphical models of brain nuclei and
other neural tissue as viewed in animation. This visualization facility requires the Onyx workstation.

8 SIGNIFICANCE
A representational framework for neuron morphology is presented that is adequate both for the quantitative

description and stochastic generation of neuron populations. All models are presently limited to modeling neuron
morphology at the limit of optical resolution.

The applications of these stochastic L-system models are several. The L-system models bring coherence to
existing neuron databases; they allow us to estimate the new information contributed by the additional neuron
morphological measurements.

A paradigm shift to a new mode of analyzing neuron morphology is suggested. The developing bifurcations
and multifurcations of growing dendritic and axonal arbors bear striking resemblance, in ultra-slow motion, to
nuclear scattering events. We recognize this resemblance, and statistically describe these junction "events" by a
variant of the S-matrix theory used in the formal theory of nuclear reactions. Conceptually, the block of embedded
histological tissue replaces the bubble chamber of high energy physics. The methodology is now largely in place
for the measurement and morphological analysis of large neuron populations.
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Figure 10: Neuron morphology modeler
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